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Outline

* CERN and its upcoming computing challenges

* A brief intro to distributed Al training and
hyperparameter optimization

* Hyperparameter optimization on HPC in
practice

« Example application from High Energy
Physics: ML-based Particle Flow
Reconstruction
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CERN is the world’s largest |-
laboratory for particle
physics

Our goal is to understand
the most fundamental
particles and laws
of the universe




Large Hadron Collider
(LHC)

e 27 km in circumference

« Around 100 m underground

« Superconducting magnets
steer the particles around
the ring

e Particles are accelerated to
close to the speed of light
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Giant detectors record the
particles formed at the
four collision points

We use them to answer
fundamental scientific questions!

« Why is the universe made only of matter, with
hardly any antimatter?

« Why is gravity so weak compared to other
forces?

 |sthere only one Higgs boson, and does it
behave exactly as expected?



The LHC produces more than 1 billion particle collisions
per second, resulting in 1TTB/minute stored in our Data Centre

-~

A

The energy of the particles
in collision is converted into
new particles

4

o

The detectors measure the
energy, direction and charge
of new particles formed

They are analogous to 3D cameras
taking 40 million pictures a second,
of which 1000 are selected and
saved
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LHC Upgrade

\

- Although the LHC have been running for a long
time, we are only at 10% of its exploitation. There
are still many things to do, both on the scientific
and technical level.

+  The HL-LHC will use new technologies to provide
10 times more collisions than the LHC

- It will provide greater precision and discovery
o potential 0

- |t will start operating in 2029 and run until 2040 2010 2015 2020 2025 2030 2035 2040
| Year

.
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Challenges at HL-LHC

Upgraded

Accelerator 8 Changing

Filtering
Paradigms

New Computing Challenges

Run 3 (1=55) Run 4 (1=88-140) Run 5 (1=165-200) Run 3 (1=55) Run 4 (1=88-140) Run 5 (1=165-200)

50— ATLASPreliminary ATLAS Preliminary

CMS Public 2022 Computing Model - CPU 2022 Computing Model - Disk

Total CPU
2022 Estimates
—— No R&D improvements
-@- Weighted probable scenario
== = 10 to 20% annual resource increase

40

® Conservative R&D ¢ Conservative R&D
v Aggressive R&D v Aggressive R&D

— Sustained budget model o — Sustained budget model
30 (+10% +20% capacity/year) '.' (+10% +20% capacity/year)

Disk Storage [EB]
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Annual CPU Consumption [MHSO6years]

Total CPU[KkHSO06-years]

O2020 2022 2024 2026 2028 2030 2032 2034 2036 2020 2022 2024 2026 2028 2030 2032 2034 2036

Year Year

02021 2023 2025 2027 2029 2031 2033 2035 2037
Year

The resource gap motivates investment in:

Code modernization Investments
HPC and hardware accelerators
New techniques, from Al to QC

Upgraded
Detectors

O Eric Wulff  Vlaams Supercomputer Centrum User Day



We leverage HPC resources in HEP and beyond

CERN
\\

RASE

Center of Excellence

Research and development on Al- and
simulation-based engineering at Exascale

Inter Twin

To co-design and implement the prototype
of an interdisciplinary Digital Twin Engine

&S SPECTRUM

CERN leverages common visions and

challenges to help deliver a Strategic

Research, Innovation and Deployment
Agenda (SRIDA) and a Technical Blueprint

( # BioDynaMo.org

To build a software that supports scientists
to easily create, run, and visualize multi-
dimensional agent-based simulations

Responding to
EuroHPC
Community CoE

* 7
«1=3 EuroHPC
= Joint Undertaking

Focuses on the needs of a given community

(would be HEP in our case), to elevate their

codes to a better / more efficient / possible
use on EuroHPC JU systems.
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Artificial intelligence thrives at CERN

ML-particle flow

Input tracks and Output particles

MLPF = Charaed hadron
S Photon

calorimeter clusters

— Track [ N — Neutral hadron

ECAL or HCAL . | % — Electron
cluster (A — Muon

Real-time data
selection & filtering

Accelerator

Simulation
systems
Beam dynamics

O(nanos -micros) event
and control

reconstruction in FPGAs

Generative models for
event generation and
Enhanced fast simulation e.g

diagnostics & ATLAS FastCalo GAN

predictions

Fake reduction

Anomaly detection w/
VAEs & CNNs

neural

network
A
[

-y tﬂ

Infrastructure

Muon tracking

Network
saturation
prediction

EXPERIMENT

On-detector data
compression (AE)

Data quality
monitoring

Deep Sets Graph Neural Network
architecture with multi head attention

N Eric Wulff  Vlaams Supercomputer Centrum User Day

Graph | Target

AENSS

Clustering and
pattern recognition

Signal/background
discriminations

ML-particle flow
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A brief introduction to
distributed Al training
and hyperparameter
optimization

(ﬁ@ Eric Wulff Vlaams Supercomputer Centrum User Day
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Training deep learning models

* In DL, model parameters w are learned using backpropagation and gradient descent to
minimize some objective, or loss, f(w, )
» Training:
« For each x in training data, compute the gradients of the loss and change the model’s weights by subtracting from
them the gradients multiplied by some learning rate, a

« Repeat until convergence or reaching some other stopping criterion

Ground truth, y;

Model: M(x,w) =y

Input, x Model Output, y Loss Compute
function gradients w.r.t. w
Change model weights by —ocg—fv
Eric Wulff Vlaams Supercomputer Centrum User Day P



Distributed training

« What is Distributed Training?
* Training models across multiple devices/nodes
- Enables scaling to larger models and datasets

« Why It Matters:
 Faster training times
 Faster development cycles
« Overcome memory constraints

« Examples of distributed strategies:
 Data parallel
* Fully sharded data parallel, ZeRO-3, ZeRO-2, ZeRO-1
 Tensor parallel
* Pipeline parallel
* EtC.

(ﬁ@ Eric Wulff Vlaams Supercomputer Centrum User Day
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Distributed training strategies

Data parallelism Tensor parallelism Pipeline parallelism

Replicates same model across multiple devices Splits individual layers across GPUs Breaks model into sequential stages that run

. . . on separate GPUs
Copy entire model on each device . Divides the computation of a X

: (E;aCZOCOpy trains on dh;feregt batches single tensor operation among * Input data flows through the pipeline
ra kl]ents. arde averagj ?n . 4 devices stages sequentially
SYNCNTONIZe TR 05 i o « Each device handles a fraction «  Overlapping execution: while one batch
optimization step of the overall computation is processed in later stages, the next

batch can enter the pipeline

Output Output Output Output

Input Input ‘

Input
4 Input

S

/) Eric Wulff  Vlaams Supercomputer Centrum User Day 14




Challenges In distributed training

« Communication overhead: Synchronization between GPUs

- Memory/data loading bottlenecks: Data loading not fast enough to saturate all
GPUs

- Debugging complexity: Harder to troubleshoot than single-GPU training

- Generalization gap: Large global batch size can sometimes result in a generalization
&dp

(ﬁ@ Eric Wulff Viaams Supercomputer Centrum User Day
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The generalization gap

» Even with LR-scaling a generalization gap may appear when training with large batch sizes
(Accurate, Large Minibatch SGD: Training ImageNet in T Hour arxiv:1706.02677)

 This may be due to several causes and will differ in different models and datasets
 Larger batch size leads to fewer optimization steps (if number of epochs is kept constant) — train for longer
 Large LR leads to training instabilities - LR warmup or scale LR less aggressively
* Insufficient tuning of other HPs when LR is scaled —» Hyperparameter optimization
 Try using a specialized optimizer such as LAMB (arxiv:1904.00962)

kn=256, n= 0.1, 23.60%%+0.12 \ kn=256, m= 0.1, 23.60%%0.12
kn= 8k, n= 3.2, 24.84%+0.37 \ kn= 8k, n= 3.2, 23.74%+0.09

Gradual LR warmup

o
.
o
=
o
(@)
=
=
©
p -
e

Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour arxiv:1706.02677

Eric Wulff Viaams Supercomputer Centrum User Day
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Generalization gap in MLPF training

Fine-tuning machine-learned particle-flow reconstruction for new detector geometries in

 Generalization gap appeared when moving to future colliders
mU|ti-G PU tralnln g Farouk Mokhtar ®,%** Joosep Pata ®,?' ' Dolores Garcia®,® Eric
Wulff ©,2 Mengke Zhang ©,! Michael Kagan ©,* and Javier Duarte ®!
[ - ! University of California San Diego, La Jolla, USA
LR Sca | I ng alone prcved InSUffICIent 2National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

8 European Center for Nuclear Research (CERN), Geneva, Switzerland

% LR_Sca | i ng + add itional hyperpa ra meter tu n i ng did *SLAC National Accelerator Laboratory, Stanford, USA
the triCkl (Dated: March 25, 2025)

Default
4 GPUs
— 4 GPUs, learning rate x4
—_4 GPUs, learning/rate x4, weight decay x3

—
N

Relative validation loss
o -

20 30 40 50 60 70
Training time [hours]

Farouk Mokhtar, Joosep Pata, Dolores Garcia, Eric Wulff, Mengke Zhang, Michael Kagan, Javier Duarte, Fine-tuning
machine-learned particle-flow for new detector geometries in future colliders https://arxiv.org/abs/2503.00131

Eric Wulff Vlaams Supercomputer Centrum User Day
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Hyperparameter optimization (HPO) (1)

(ﬁ@ Eric Wulff Vlaams Supercomputer Centrum User Day
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Hyperparameter optimization (HPO) (1)

* f(w,0), depends not only on f is the final validation
w, but also on 6 loss after completed training,

f is not the model itself
* w. Model parameters

* 0: Hyperparameters VI ERACADER
« Number of layers or nodes

« Choice of optimizer, learning welghtsgw
rate, batch size, etc.

» Hyperparameter . : ]
optimization (HPO) is the . p : .
process of tuning 6 to . S . E
improve performance Input, x E . * .

(C\E@ Eric Wulff  Vlaams Supercomputer Centrum User Day
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Hyperparameter optimization (HPO) (2)

« Optimizing the objective f(w, 0) is done in two different ways
1. Training: Optimize f w.r.t. w by gradient descent = search for w* = arg mmi;n f(w,8)

2. HPO: Optimize f w.r.t. 8 = search for 8" = arg mgn f(w,0)

f(w, 0) is differentiable w.r.t. w

Gradient descent

f(w)

Eric Wulff Viaams Supercomputer Centrum User Day

f (w, 8) non-differentiable w.r.t. 6

Black-box optimization
No straightforward update rule for 6

? f(0)

20



Hyperparameter optimization (HPO) (3)

* We want to find 8* = arg m@in f(w, 0) but only get to query

values of f, not compute its gradient w.r.t. 6

* w: Model parameters (learned by gradient descent)
* 9: Hyperparameters

* f(w,0): What we're trying to minimize, e.g., loss

* f is non-differentiable w.r.t. 6

» f is often expensive to evaluate

* HPO is compute-resource intensive
» Benefits greatly from HPC resources
* In need of smart, efficient search algorithms

(ﬁ@ Eric Wulff Viaams Supercomputer Centrum User Day

f(0)
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Some popular HPO algorithms

 Search algorithms
* Model free:

» Grid search Static configuration selection
« Random search

» Evolutionary search
« Model-based: Adaptive configuration selection

« Bayesian optimization

* Scheduling algorithms

* Successive Halving (SHA)
* Hyperband

* Asynchronous SHA (ASHA)

* Resource Adaptive Successive , _
Doubling (RASDA) Search and scheduling algorithms
can easily be combined

Adaptive configuration evaluation

(ﬁ@ Eric Wulff Viaams Supercomputer Centrum User Day
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Search algorithms
for HPO

(ﬁ@ Eric Wulff Vlaams Supercomputer Centrum User Day
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Grid and random search

 Grid search
» Deterministic
« Exhaustive search (on the grid)
» Uses same value several times

e Random Search

» Stochastic

* Exhaustive search (on the random
points)

* Explores many more values of each HP

Eric Wulff Vlaams Supercomputer Centrum User Day
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Important parameter Important parameter

Figure from: James Bergstra and Yoshua Bengio: Random Search for Hyper-Parameter
Optimization, https://www.jmlr.org/papers/volumel13/bergstral?a/bergstral2a.pdf
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Bayesian optimization (1)

(ﬁ@ Eric Wulff Vlaams Supercomputer Centrum User Day
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Bayesian optimization (1)

« Bayesian Optimization (BO) is a black-box optimization technique for
expensive and/or noisy objectives

* Surrogate model
» Estimates f(0), given some HPs 6
 Estimates uncertainty of the objective function estimate
* Must be much faster than evaluating f

 Acquisition function

» Selects next 0 to evaluate
» Makes exploitation/exploration trade-off

* Popular choice: Expected Improvement (El), i.e., how much better is the next
observation going to be over our current best?

(ﬁ@ Eric Wulff Viaams Supercomputer Centrum User Day
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Bayesian optimization (2)

First evaluate n trials to
fit surrogate model to

Often a GP Often argmax E1(0)
0
64 f(61) .
V) V)
& ) J02) s Tsumogate| == f5(6) == A(fs) == 6 .1
' ' ; model
0 f(0 )

C\E\/RD’ Eric Wulff Vlaams Supercomputer Centrum User Day

Repeat until stopping criterion

f(@ n+1)
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Bayesian optimization (3)

*Let's visualize the BO process

*|n this example we have

« a Gaussian Process as the surrogate
model and

 use El as the acquisition function

(‘i@ Eric Wulff  Vlaams Supercomputer Centrum User Day
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Bayesian optimization (3)

*Let's visualize the BO process

*|n this example we have

« a Gaussian Process as the surrogate
model and

 use El as the acquisition function

(‘i@ Eric Wulff  Vlaams Supercomputer Centrum User Day
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Bayesian optimization (3)

*Let's visualize the BO process

*|n this example we have

« a Gaussian Process as the surrogate
model and

 use El as the acquisition function

(‘i@ Eric Wulff  Vlaams Supercomputer Centrum User Day
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Bayesian optimization (3)

*Let's visualize the BO process

*|n this example we have

« a Gaussian Process as the surrogate
model and

 use El as the acquisition function

(C\E@ Eric Wulff  Vlaams Supercomputer Centrum User Day
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Bayesian optimization (3)

*Let's visualize the BO process

*|n this example we have

« a Gaussian Process as the surrogate
model and

 use El as the acquisition function

(C\E@ Eric Wulff  Vlaams Supercomputer Centrum User Day
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Bayesian optimization (3)

*Let's visualize the BO process

*|n this example we have

« a Gaussian Process as the surrogate
model and

 use El as the acquisition function

(C\E@ Eric Wulff  Vlaams Supercomputer Centrum User Day
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Bayesian optimization (3)

*Let's visualize the BO process

*|n this example we have

« a Gaussian Process as the surrogate
model and

 use El as the acquisition function

@@ Eric Wulff  Vlaams Supercomputer Centrum User Day
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Bayesian optimization (3)

*Let's visualize the BO process

*|n this example we have

« a Gaussian Process as the surrogate
model and

 use El as the acquisition function

@@ Eric Wulff  Vlaams Supercomputer Centrum User Day
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Bayesian optimization (3)

*Let's visualize the BO process

*|n this example we have

« a Gaussian Process as the surrogate
model and

 use El as the acquisition function

@@ Eric Wulff  Vlaams Supercomputer Centrum User Day
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Bayesian optimization (4)

 Choices of surrogate model

« Gaussian Process (GP)
* Closed form
« Runtime complexity: 0(n®)

« Random Forest

« Ensemble of decision trees
 Faster than GP
* Runtime complexity: 0(nlog(n))

« Bayesian Neural Network
* NN with uncertainty estimates built-in
* Very flexible
* Requires more training data

* Tree-structured Parzen Estimator (TPE)

» Fast
« Simple and non-parametric
* Runtime complexity: O(nlog(n))

Eric Wulff Viaams Supercomputer Centrum User Day

Example using Gaussian Process
and Expected Improvement

l~\ — E|(X)

y'S L1 ' ® Next query point
N

4 |'\1
7 S
o | ‘.\~-.' a2 i
7
/ l‘ === True (unknown)

N\ === ot

</ e Observations
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Parallel Bayesian optimization

« BO as discussed up until now is sequential, it waits for an evaluation to
complete before selecting a new set of HPs to try

* With modern computing and HPC, we can run many trials in parallel
* Must ensure to never evaluate same 6 more than once since that would be very inefficient

* One strategy is to
» Evaluate some given number of trials to get a set of observations to fit first surrogate
* Pick next 6 as described previously

* If more resources are available, modify acquisition function to penalize 6s that are currently
being evaluated but haven’t completed yet

* One way of doing this is by reducing the variance of the surrogate model at those points, 6

(ﬁ@ Eric Wulff Viaams Supercomputer Centrum User Day

38



Scheduling
algorithms for HPO

(ﬁ@ Eric Wulff Vlaams Supercomputer Centrum User Day
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Adaptive configuration evaluation

e It is possible to identify badly performing trials Some MLPF Learning Curves
early so why train them to convergence?

- Adaptive configuration evaluation strategies
terminate badly performing trials early

Some examples include:

* Successive Halving Algorithm (SHA)

« Terminate some fraction of trials according
given stopping rate s

« Hyperband
« Loop over SHA using different stopping rates s

« Asynchronous Successive Halving Algorithm
(ASHA)

« Async version of SHA

W

e
L=
W
a.
-
=

C\E\/@’ Eric Wulff  Vlaams Supercomputer Centrum User Day



Successive Halving Algorithm (SHA)

Round 1 Round 2 Round 3 Round 4
o | 1. Partially train some trials up to a
g | O decision point
= o Hyperband Bracket
(&) yp
- 2. Evaluate performance and throw N -
ecision points
3. Repeat 1-2 until target epoch is
reached or only 1 trial remains \
Hyperband ,
adds a4t — 4. Repeat 1-3 for different sets of
step decision points Target epoch

40 60
Resources (usually epochs)

C\E\/RD’ Eric Wulff Vlaams Supercomputer Centrum User Day 41



Hyperparameter optimization
on HPC in practice

(ﬁ@ Eric Wulff Vlaams Supercomputer Centrum User Day
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Distributed HPO workflow

Driver
. " rc i chedulin )
*Driver " s 3 s chestng”
: g
* Defines search space | Demes e 1} whats 11 o |
. 1 distribution should we training, or 1
* Generates hyperparameter trials | HPsare i tynext? . torminate |
d . . |
* Launches, monitors, and terminates : new tials? |
S
* Trials

» Sets up model and HPs

* Distributes model training across M
workers

» Reports metrics back to driver ! modeland ;! model ! validation

|
weights 1 : metrics
]

\

( Set up and \|{ Optimize \lf

C\E\/RD’ Eric Wulff Vlaams Supercomputer Centrum User Day



Distributed HPO on HPC systems

* User connects to HPC via ssh
* Submits HPO job through job

scheduler via e.g., SLURM Compute
nodes
* Head node generates
hyperparameter trials S
» Compute nodes train trials in N
parallel

Login node

. |
|||||
!

(‘i@ Eric Wulff  Vlaams Supercomputer Centrum User Day



Distributed HPO on HPC systems

* User connects to HPC via ssh

* Submits HPO job through job > t Driver
- ompute
scheduler via e.g., SLURM nodpes P \ somectain
I space 11 algorithm !i g :
* Head node generates - : ;: ! algorithm
2 I in :
hyperparameter trIaIS N ,..u.n' :- E‘ : gii,irit?jt;[gr? :: X\rlmgiﬁdeFv,: :: Keep :
p A ) \ ,|||I':: ;- : : HPs are :' try next? :' training, or |
» Compute nodes train trials in N --\ | drawn from |, | torminato |
para”el 1L N Iy and launc J

Iy
) |
5

Login node w7 1= \
< \ l""':: @ E‘ : | | model :: validation
N u'::l - , weights 1 metrics
N E‘.- =E®
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Two levels of parallelization

Driver

BN T B

Eric Wulff Vlaams Supercomputer Centrum User Day
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Two levels of parallelization

Hyperparameter
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Optimization
7ANN 7\
VAN VAN
Worker 1 Worker 2 Worker 1 Worker 2
Distributed

weining o o

Eric Wulff Viaams Supercomputer Centrum User Day

AN
VAN

Worker 1 Worker 2

) (e
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RASE

Center of Excellence

Al & HPC in practice: SIM NS

Distributed training and HPO FOU
for MLPF

In collaboration with the CMS Experiment.
Eric and David were supported by the EC-funded CoE RAISE project.

Javier Duarte, Dolores Garcia, Maria Girone, Michael Kagan, Farouk
Mokhtar, Joosep Pata, David Southwick, Eric Wulff Mengke Zhang

(ﬁ@ Eric Wulff Vlaams Supercomputer Centrum User Day 48
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Event reconstruction at the LHC (1/3)

Transverse slice through the CMS detector

e Particle detectors at the LHC are
extremely complex, with many " —— Elecwron

Charged Hadron (e.g.Pion)

S u b d ete Cto rS : | — — — - Neutral Hadron (e.g. Neutron)

» Particles interact with the detectors
and |leave tracks and energy deposits

* Information from subdetectors are
combined to produce a particle-level
interpretation of the event

« Event reconstruction is the process of
inferring higher-level physics objects
from detector signals

JINST 12 (2017) P10003
@ Eric Wulff Viaams Supercomputer Centrum User Day 49



Event reconstruction at the LHC

 Event reconstruction attempts to solve the inverse problem of particle-detector interactions, i.e.,
going from detector signals back to the particles that gave rise to them

» Particle-flow (PF) reconstruction takes tracks and clusters of energy deposits as input and gives
particle types and momenta as output

A

% neutral
HCAL

clusters

Detector

—
%

Particle Flow

clusters

@@ Eric Wulff  Vlaams Supercomputer Centrum User Day
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(MLPF)

« The Particle Flow (PF) Algorithm [1]

« Tries to identify and reconstruct all stable individual
particles from collision events by combining information
from different subdetectors (tracks, calorimeter clusters)

« Machine-Learned Particle-Flow (MLPF) [2]
« GPU accelerated, NN-based algorithm for PF
« Code available on GitHub

 Details on TensorFlow GNN model: ACAT2021 talk by |. Pata (and

proceedings)

» Details on HPO: ACAT 2021 talk by E. Wulff (and proceedings)
» Details on PyTorch Transformer model: EPS-HEP talk by F. Mokhtar

* MLPF in CMS, CLIC and CLD: FCC-ee workshop presentation by F. Mokhtar

e See Nature Commun. Phys. 2024 and Phys. Rev. D 111,

092015, 2025 for latest published results.
« Latest public CMS results: CMS-DP-2025-033

« We aim for a CMS paper in the near future.

[1] CMS Collaboration https://cds.cern.ch/record/1194487?In=en

C\E\/RD’ Eric Wulff Vlaams Supercomputer Centrum User Day

Machine-Learned Particle Flow

The MLPF model

Event as input set Event as graph Transformed inputs

® 9 0\T< o
Y Graph R Message [N
o F(X|lw)=A C(X,Alw)=H

Target set ¥ = {y;} Output set ¥' = {y/} l

Elementwise loss L(y;, y! Elementwise
L (yj y / ) - decoding
classification & regression

+—>

D(x;, hj lw) = yj’

x; = [elem. type, pr, Egcar, Encars 1> @» Nouter Pouter» 4 -+ -

y; = [PID, py, E,n, ¢, q], PID € {none, charged hadron, neutral hadron, y, e*, u*, ...}

hi & [RMnidden
Trainable neural networks: &, &, J

® - track, @ - calorimeter cluster, ® - encoded element
- target (predicted) particle, - no target (predicted) particle

[2] Pata, J., Duarte, J., Vlimant, JR. et al. MLPF: efficient machine-learned particle-flow reconstruction using
graph neural networks. Eur. Phys. J. C 81, 381 (2021). https://doi.org/10.1140/epjc/s10052-021-09158-w



https://github.com/jpata/particleflow
https://indico.cern.ch/event/855454/contributions/4597457/
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ML-based particle flow reconstruction

Trained model

ML training

Model export

MLPF event reconstruction
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Improved particle-flow event reconstruction with
M L P F scalable neural networks for current and future
particle detectors

Improves event reconstruction using ML | | |
. ) . Joosep Pata!”, Eric Wulff?>, Farouk Mokhtar®, David Southwick?,
Wh | | e ke e p | ng Mo d e | S p O rta b | e adan d alm ed Mengke Zhang®, Maria Girone?, Javier Duarte®

"National Institute of Chemical Physics and Biophysics (NICPB),

at possible future deployment scenarios Ritvala pst 10, 10143 Tallinn, Estonia

2European Center for Nuclear Research (CERN), CH 1211, Geneva 23,
Switzerland.
#University of California San Diego, La Jolla, CA 92093, USA.
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Based on electron-positron collision events in a Pata, J., WuIff, E.,, Mokhtar, F. et al. Improved particle-flow event reconstruction with scalable neural networks for
CLIC-based detector geometry current and future particle detectors. Commun Phys 7, 124 (2024). https.//doi.org/10.1038/542005-024-01599-5

Dataset: https://zenodo.org/records/8260741
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Highly diverse and granular datasets

Tracks and calorimeter hits

® Raw ECAL hit
® Raw HCAL hit

« Highly diverse and granular ed P e o
datasets suitable for tracking, ; 3 0
clustering and particle flow

Uy, Particles
reconstruction R i KV
¥ AN Calorimeter S\
. ' Raw tracker hit c/ustering
BN Raw ECAL hit
° 1] LI . .
Can be USEd for bOth Wl A :x ;ﬁgﬁ::amberhit Tracks and calorimeter clusters

supervised and unsupervised
learning

ECAL or HCAL cluster

Pata, J., Wulff, E., Mokhtar, F. et al. Improved particle-flow event reconstruction with scalable neural networks for current
and future particle detectors. Commun Phys 7, 124 (2024). https://doi.org/10.1038/s42005-024-01599-5
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Portable distributed training
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» The HPC Al chip landscape is diversitying,
we need flexible and portable codes to
make use of them

(0]

 MLPF training is portable and runs on
CPU, NVIDIA and AMD GPUs as well as
Intel Habana Gaudi cards

()]

AN

linear scaling
CoreSite (H100)
LUMI (MI250X)
Voyager (Gaudi)
Voyager (Gaudi2)

* We use PyTorch DDP to implement multi-
GPU training
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Pata, J., Wulff, E.,, Mokhtar, F. et al. Improved particle-flow event reconstruction with scalable neural networks for
current and future particle detectors. Commun Phys 7, 124 (2024). https://doi.org/10.1038/s42005-024-01599-5
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MLPF scaling on VEGA interTwin

baseline-ray-ddp
deepspeed
horovod
ray-deepspeed
ray-horovod
ray-torch-ddp
torch-ddp

linear speedup

Speedup

Number of GPUs
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Multi-node scaling of MLPF HPO RNSE

e Scaling of an HPO run of MLPF on
the JURECA-DC-GPU system at the
Julich Supercomputer Centre (JSC), 4 T Actial
NVIDIA A100 and 2% 64 cores AMD Linear
EPYC 7742 per node

Run 3 (14 TeV), tt with PU200

 Superlinear scaling due to ASHA re-
loading models when using fewer
nodes

« ASHA + Baye5|an optlmlzatlon System: JURECA-DC-GPU
4x NVIDIA A100 GPU, 4x 40 GB HBM2e
’ 2x AMD EPYC 7742, 2x 64 cores, 2.25 GHz

« HPO lends itself very well to
parallelization

48 04 80
Number of GPUs

Dataset used: Simulated particle-level events of ttbar and QCD with PU200 using Pythia8+Delphes3
for machine learned particle flow (MLPF), https://doi.org/10.5281/zenod0.4559324
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Distributed hyperparameter
optimization

Optimization

e Final validation loss AN AN AN

A VAN VAN VAN
decreased by |n CMS Distributed Worker 1 Worker 2 Worker 1 Worker 2

A L - -

in significant performance

INCreases
CM

Run 3 (14 TeV), tt, QCD with PU50 Run 3 (14 TeV), tt, QCD with PU50
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Mean and stddev of 10 trainings
Final GNN:8.3+0.4

—— Training loss —— Training loss

* Runs on 24-96 A100 GPUs |

CMS Simulation Preliminary

at the Flatiron Institute and B gl
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* Used ~2400 GPU-hours for s

Mean and standard deviation of 10 trainings
Final training loss: 1.57 +/- 0.15

th e C I\/I S tu n i n g a n d el 5 OO O | Final validation loss: 1.55 +/- 0.12 . |
Pata, J.,, Wulff, E., Mokh.tar, F. et al. Improved particle-flow
GPU-hours for CLIC 5| ot and Jtire pertice dotetors Commmun Phys 7. 124

Joosep Pata, Javier Duarte, Farouk Mokhtar, Eric Wulff, Jieun Yoo, Jean-Roch Vlimant, Maurizio (2024).
Pierini and Maria Girone on behalf of the CMS Collaboration, doi:10.1088/1742-6596/2438/1/012100

Eric Wulff, Maria Girone and Joosep Pata, doi:10.1088/1742-6596/2438/1/012092
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Moving Forward

« HPC systems provide large numbers of powerful GPUs
suitable for Al training

e Distributed training speeds up model development cycles
and model training

« HPO si%nificantly increased model performance in the
example of MLPF

* We have aIreadK begun to see the benefits from
engaging with the HPC community

 CoE RAISE, interTwin, SPECTRUM, ODISSEE, etc.

« The SPECTRUM project is working on facilitating HPC
access to the HEP and RA communities in Europe

« We are submitting more applications for EuroHPC JU
research calls in the near future

« Computing is experiencing a rapid evolution of
technology and techniques with large improvements in
HW accelerators and software applications

(ﬁ@ Eric Wulff Vlaams Supercomputer Centrum User Day
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Thank you

17th December 2025

Eric Wulff

CTO for Al on HPC, CERN openlab
CERN IT Department
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Scaling laws for the MLPF models

* We trained models on datasets of
varying size and fit power laws to the
relationship between validation loss
and dataset size

* As expected, larger datasets
translates to better performance

* This motivates us to

« generate larger datasets in the future

» further improve training speed to keep
runs within a reasonable time window

e consider multi-node training

Eric Wulff Vlaams Supercomputer Centrum User Day

MLPF with GNN vs. with Transformer

e Transformer
GNN
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L(D) = (Dc/D)*"
Dc=3.217
ap =0.056

10 10°
Dataset size [training samples]

Eric Wulff, Joosep Pata, Maria Girone, PASC24, https://pasc24.pasc-
conference.org/presentation/?id=pos141&sess=sess158
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