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Outline

•CERN and its upcoming computing challenges

•A brief intro to distributed AI training and 
hyperparameter optimization

•Hyperparameter optimization on HPC in 
practice

•Example application from High Energy 
Physics: ML-based Particle Flow 
Reconstruction
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CERN is the world’s largest 
laboratory for particle 

physics

Our goal is to understand 
the most fundamental 

particles and laws 
 of the universe
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• 27 km in circumference

• Around 100 m underground

• Superconducting magnets 
steer the particles around 
the ring

• Particles are accelerated to 
close to the speed of light

Large Hadron Collider
(LHC)
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Giant detectors record the 
particles formed at the

four collision points

We use them to answer
fundamental scientific questions!

• Why is the universe made only of matter, with 
hardly any antimatter?

• Why is gravity so weak compared to other 
forces?

• Is there only one Higgs boson, and does it 
behave exactly as expected?
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The LHC produces more than 1 billion particle collisions
per second, resulting in 1TB/minute stored in our Data Centre

The energy of the particles 
 in collision is converted into 

new particles

The detectors measure the 
energy, direction and charge 

of new particles formed

They are analogous to 3D cameras 
taking 40 million pictures a second, 

of which 1000 are selected and 
saved
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• Although the LHC have been running for a long 
time, we are only at 10% of its exploitation. There 
are still many things to do, both on the scientific 
and technical level.

• The HL-LHC will use new technologies to provide 
10 times more collisions than the LHC

• It will provide greater precision and discovery 
potential

• It will start operating in 2029 and run until 2040

Run4 – Average 200 
collisions per crossing 

Run2 – Average 40 collisions 
per crossing 

LHC Upgrade
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Challenges at HL-LHC
Upgraded 

Accelerator Changing 
Filtering 

Paradigms

R&D
InvestmentsUpgraded 

Detectors

New Computing Challenges
Higher 

luminosity

Higher 
granularity

for
Higher 

occupancy

The resource gap motivates investment in:
 

Code modernization
HPC and hardware accelerators
New techniques, from AI to QC

Higher data 
rates
for

Higher 
sensitivity
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We leverage HPC resources in HEP and beyond

BioDynaMo.org
To build a software that supports scientists 

to easily create, run, and visualize multi-
dimensional agent-based simulations

Fire hazard 
prediction

Drought 
prediction

High-energy
physics

Gravitational 
waves

Lattice QCD

Radio 
astronomy

Storm 
prediction

Early flood 
warnings

Responding to 
EuroHPC 

Community CoE

Focuses on the needs of a given community 
(would be HEP in our case), to elevate their 
codes to a better / more efficient / possible 

use on EuroHPC JU systems.

Research and development on AI- and 
simulation-based engineering at Exascale

To co-design and implement the prototype 
of an interdisciplinary Digital Twin Engine

CERN leverages common visions and 
challenges to help deliver a Strategic 
Research, Innovation and Deployment 

Agenda (SRIDA) and a Technical Blueprint
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Accelerator 
systems

Real-time data 
selection & filtering Simulation Analysis

Anomaly detection w/ 
VAEs & CNNs

Fake reduction

O(nanos -micros) event 
reconstruction in FPGAs

Clustering and 
pattern recognition

Signal/background 
discriminations

e.g H-> ɣɣ

Generative models for 
event generation and 

fast simulation e.g 
ATLAS FastCalo GAN

Beam dynamics 
and control 

Network 
saturation 
prediction

ML-particle flow

Particle classification 
& Jet tagging

Infrastructure

Muon tracking

On-detector data 
compression (AE) Energy calibration

Data quality 
monitoring

Enhanced 
diagnostics & 
predictions 

ML-particle flowArtificial intelligence thrives at CERN
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A brief introduction to 
distributed AI training 
and hyperparameter 
optimization
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Training deep learning models
• In DL, model parameters 𝑤 are learned using backpropagation and gradient descent to 

minimize some objective, or loss, 𝑓(𝑤, 𝜃)
• Training:

• For each 𝑥 in training data, compute the gradients of the loss and change the model’s weights by subtracting from 
them the gradients multiplied by some learning rate, ⍺

• Repeat until convergence or reaching some other stopping criterion

Compute 
gradients w.r.t. 𝑤

Loss 
function

Ground truth, 𝑦! 

ModelInput, 𝑥 Output, 𝑦

Change model weights by −⍺ "#
"$

Model: 𝑀 𝑥,𝑤 = 𝑦
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Distributed training
• What is Distributed Training?

• Training models across multiple devices/nodes
• Enables scaling to larger models and datasets

• Why It Matters:
• Faster training times
• Faster development cycles
• Overcome memory constraints

• Examples of distributed strategies:
• Data parallel
• Fully sharded data parallel, ZeRO-3, ZeRO-2, ZeRO-1
• Tensor parallel
• Pipeline parallel
• Etc.

Node 2

Node 1

Model
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Distributed training strategies

GPU 1

GPU 2

Input

Output

Input

Output

Data parallelism
Replicates same model across multiple devices

Input

Output

Input

Output

Tensor parallelism
Splits individual layers across GPUs

Pipeline parallelism
Breaks model into sequential stages that run

on separate GPUs• Copy entire model on each device
• Each copy trains on different batches
• Gradients are averaged and 

synchronized across devices in each 
optimization step

• Divides the computation of a 
single tensor operation among 
devices

• Each device handles a fraction 
of the overall computation

• Input data flows through the pipeline 
stages sequentially

• Overlapping execution: while one batch 
is processed in later stages, the next 
batch can enter the pipeline
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Challenges in distributed training

• Communication overhead: Synchronization between GPUs

• Memory/data loading bottlenecks: Data loading not fast enough to saturate all 
GPUs

• Debugging complexity: Harder to troubleshoot than single-GPU training

• Generalization gap: Large global batch size can sometimes result in a generalization 
gap
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The generalization gap
• Even with LR-scaling a generalization gap may appear when training with large batch sizes 

(Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour arxiv:1706.02677)
• This may be due to several causes and will differ in different models and datasets
• Larger batch size leads to fewer optimization steps (if number of epochs is kept constant) → train for longer
• Large LR leads to training instabilities → LR warmup or scale LR less aggressively
• Insufficient tuning of other HPs when LR is scaled → Hyperparameter optimization
• Try using a specialized optimizer such as LAMB (arxiv:1904.00962)

Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour (arxiv:1706.02677)

No LR warmup Gradual LR warmup
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Generalization gap in MLPF training
• Generalization gap appeared when moving to 

multi-GPU training
• LR-scaling alone proved insufficient
• LR-scaling + additional hyperparameter tuning did 

the trick!

Farouk Mokhtar, Joosep Pata, Dolores Garcia, Eric Wulff, Mengke Zhang, Michael Kagan, Javier Duarte, Fine-tuning 
machine-learned particle-flow for new detector geometries in future colliders https://arxiv.org/abs/2503.00131 
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Hyperparameter optimization (HPO) (1)
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Hyperparameter optimization (HPO) (1)
• 𝑓(𝑤, 𝜃), depends not only on 
𝑤, but also on 𝜃
• 𝑤: Model parameters 
• 𝜃: Hyperparameters

• Number of layers or nodes
• Choice of optimizer, learning 

rate, batch size, etc.

• Hyperparameter 
optimization (HPO) is the 
process of tuning 𝜃 to 
improve performance

𝑓 is the final validation
loss after completed training,
𝑓	is not the model itself

Model: 𝑀 𝑥,𝑤 = 𝑦

Output, 𝑦Input, 𝑥

Weights, 𝑤 
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Hyperparameter optimization (HPO) (2)
•Optimizing the objective 𝑓(𝑤, 𝜃) is done in two different ways

1. Training: Optimize 𝑓 w.r.t. 𝑤 by gradient descent ⟹ search for 𝑤∗ = argmin
%
𝑓(𝑤, 𝜃)

2. HPO: Optimize 𝑓 w.r.t. 𝜃 ⟹ search for 𝜃∗ = argmin
&
𝑓(𝑤, 𝜃)

𝑓(𝑤, 𝜃) non-differentiable w.r.t. 𝜃

𝑓(
𝑤
)

weight space

𝑓 𝑤, 𝜃  is differentiable w.r.t. 𝑤

Gradient descent

?𝜃 𝑓(𝜃)

• Black-box optimization
• No straightforward update rule for 𝜃
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Hyperparameter optimization (HPO) (3)

• We want to find 𝜃∗ = argmin
&
𝑓(𝑤, 𝜃) but only get to query 

values of 𝑓, not compute its gradient w.r.t. 𝜃
• 𝑤: Model parameters (learned by gradient descent)
• 𝜃: Hyperparameters
• 𝑓(𝑤, 𝜃): What we’re trying to minimize, e.g., loss
• 𝑓 is non-differentiable w.r.t. 𝜃

• 𝑓 is often expensive to evaluate
• HPO is compute-resource intensive

• Benefits greatly from HPC resources
• In need of smart, efficient search algorithms

?𝜃 𝑓(𝜃)
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Some popular HPO algorithms

• Search algorithms
• Model free:

• Grid search
• Random search
• Evolutionary search

• Model-based:
• Bayesian optimization

• Scheduling algorithms
• Successive Halving (SHA)
• Hyperband
• Asynchronous SHA (ASHA)
• Resource Adaptive Successive 

Doubling (RASDA)

Static configuration selection

Adaptive configuration evaluation

Adaptive configuration selection

Search and scheduling algorithms 
can easily be combined
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Search algorithms 
for HPO
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Grid and random search

•Grid search
• Deterministic
• Exhaustive search (on the grid)
• Uses same value several times

•Random Search
• Stochastic
• Exhaustive search (on the random 

points)
• Explores many more values of each HP

Figure from: James Bergstra and Yoshua Bengio: Random Search for Hyper-Parameter 
Optimization, https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
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Bayesian optimization (1)
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Bayesian optimization (1)

•Bayesian Optimization (BO) is a black-box optimization technique for 
expensive and/or noisy objectives

•Surrogate model
• Estimates	𝑓(𝜃), given some HPs 𝜃
• Estimates uncertainty of the objective function estimate
• Must be much faster than evaluating 𝑓

•Acquisition function
• Selects next 𝜃 to evaluate
• Makes exploitation/exploration trade-off
• Popular choice: Expected Improvement (EI), i.e., how much better is the next 

observation going to be over our current best?
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Bayesian optimization (2)

𝜃 "

𝜃 #

𝜃 $

… ?
𝑓(𝜃 ")

𝑓(𝜃 #)

𝑓(𝜃 $)

…

Fit 
surrogate 

model
𝑓%(𝜃) 𝐴(𝑓%) 𝜃 #&$

Repeat until stopping criterion

? 𝑓(𝜃 #&$)

Often argmax
!

𝐸𝐼(𝜃)Often a GP

First evaluate n trials to 
fit surrogate model to
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Bayesian optimization (3)

•Let’s visualize the BO process
•In this example we have

• a Gaussian Process as the surrogate 
model and

• use EI as the acquisition function
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Bayesian optimization (3)

•Let’s visualize the BO process
•In this example we have

• a Gaussian Process as the surrogate 
model and

• use EI as the acquisition function
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Bayesian optimization (3)

•Let’s visualize the BO process
•In this example we have

• a Gaussian Process as the surrogate 
model and

• use EI as the acquisition function
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Bayesian optimization (3)

•Let’s visualize the BO process
•In this example we have

• a Gaussian Process as the surrogate 
model and

• use EI as the acquisition function
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Bayesian optimization (3)

•Let’s visualize the BO process
•In this example we have

• a Gaussian Process as the surrogate 
model and

• use EI as the acquisition function
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Bayesian optimization (3)

•Let’s visualize the BO process
•In this example we have

• a Gaussian Process as the surrogate 
model and

• use EI as the acquisition function
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Bayesian optimization (3)

•Let’s visualize the BO process
•In this example we have

• a Gaussian Process as the surrogate 
model and

• use EI as the acquisition function
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Bayesian optimization (3)

•Let’s visualize the BO process
•In this example we have

• a Gaussian Process as the surrogate 
model and

• use EI as the acquisition function
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Bayesian optimization (3)

•Let’s visualize the BO process
•In this example we have

• a Gaussian Process as the surrogate 
model and

• use EI as the acquisition function
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Bayesian optimization (4)
•Choices of surrogate model

• Gaussian Process (GP)
• Closed form
• Runtime complexity: 𝑂(𝑛")

• Random Forest
• Ensemble of decision trees
• Faster than GP
• Runtime complexity: 𝑂(𝑛𝑙𝑜𝑔 𝑛 )

• Bayesian Neural Network
• NN with uncertainty estimates built-in
• Very flexible
• Requires more training data

• Tree-structured Parzen Estimator (TPE)
• Fast
• Simple and non-parametric
• Runtime complexity: 𝑂(𝑛𝑙𝑜𝑔 𝑛 )

Example using Gaussian Process 
and Expected Improvement
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Parallel Bayesian optimization

•BO as discussed up until now is sequential, it waits for an evaluation to 
complete before selecting a new set of HPs to try

•With modern computing and HPC, we can run many trials in parallel
• Must ensure to never evaluate same 𝜃 more than once since that would be very inefficient

•One strategy is to
• Evaluate some given number of trials to get a set of observations to fit first surrogate
• Pick next 𝜃 as described previously
• If more resources are available, modify acquisition function to penalize 𝜃s that are currently 

being evaluated but haven’t completed yet
• One way of doing this is by reducing the variance of the surrogate model at those points, 𝜃
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Scheduling 
algorithms for HPO
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Adaptive configuration evaluation

• It is possible to identify badly performing trials 
early so why train them to convergence?

• Adaptive configuration evaluation strategies 
terminate badly performing trials early

Some examples include:
• Successive Halving Algorithm (SHA)

• Terminate some fraction of trials according 
given stopping rate s

• Hyperband
• Loop over SHA using different stopping rates s

• Asynchronous Successive Halving Algorithm 
(ASHA)

• Async version of SHA
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Successive Halving Algorithm (SHA)
1. Partially train some trials up to a 

decision point
2. Evaluate performance and throw 

out worst x%
3. Repeat 1-2 until target epoch is 

reached or only 1 trial remains

4. Repeat 1-3 for different sets of 
decision points

R
ou

nd

Br
ac

ke
t

Hyperband 
adds a 4th 

step

Round 1 Round 2 Round 3 Round 4
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Hyperparameter optimization 
on HPC in practice
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Distributed HPO workflow

Worker M
…

Trial
Trial

Trial

Driver

Search 
space

Defines the 
distribution 

HPs are 
drawn from

Search 
algorithm

What HPs 
should we 
try next?

Scheduling 
algorithm

Keep 
training, or 
terminate 

and launch 
new trials?

Launch trials

Trial

Optimize 
model 

weights

Report 
validation 
metrics

Set up and 
model and 

HPs
Worker 1

•Driver
• Defines search space
• Generates hyperparameter trials
• Launches, monitors, and terminates 

trials

• Trials
• Sets up model and HPs
• Distributes model training across M 

workers
• Reports metrics back to driver
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Distributed HPO on HPC systems

User Login node

Compute 
nodes

• User connects to HPC via ssh
• Submits HPO job through job 

scheduler via e.g., SLURM
• Head node generates 

hyperparameter trials
• Compute nodes train trials in 

parallel
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Distributed HPO on HPC systems

User Login node

Compute 
nodes

Driver

Search 
space

Defines the 
distribution 

HPs are 
drawn from

Search 
algorithm

What HPs 
should we 
try next?

Schedulin
g 

algorithm

Keep 
training, or 
terminate 

and launch 
new trials?

Trial
Trial
Trial

Set up 
model and 

HPs

Optimize 
model 

weights

Report 
validation 
metrics

• User connects to HPC via ssh
• Submits HPO job through job 

scheduler via e.g., SLURM
• Head node generates 

hyperparameter trials
• Compute nodes train trials in 

parallel
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Two levels of parallelization

Driver

Trial 1 Trial 2 Trial N

Worker 2

…

Worker 1

Worker M

Worker 2

…

Worker 1

Worker M

Worker 2

…

Worker 1

Worker M
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Two levels of parallelization

Driver

Trial 1 Trial 2 Trial N

Worker 2

…

Worker 1

Worker M

Worker 2

…

Worker 1

Worker M

Worker 2

…

Worker 1

Worker M

Hyperparameter 
Optimization

Distributed 
training
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AI & HPC in practice:
Distributed training and HPO 
for MLPF
In collaboration with the CMS Experiment.
Eric and David were supported by the EC-funded CoE RAISE project.

Javier Duarte, Dolores Garcia, Maria Girone, Michael Kagan, Farouk 
Mokhtar, Joosep Pata, David Southwick, Eric Wulff Mengke Zhang
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Event reconstruction at the LHC (1/3)

• Particle detectors at the LHC are 
extremely complex, with many 
subdetectors

• Particles interact with the detectors 
and leave tracks and energy deposits

• Information from subdetectors are 
combined to produce a particle-level 
interpretation of the event

• Event reconstruction is the process of 
inferring higher-level physics objects 
from detector signals

JINST 12 (2017) P10003

Transverse slice through the CMS detector
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Event reconstruction at the LHC
• Event reconstruction attempts to solve the inverse problem of particle-detector interactions, i.e., 

going from detector signals back to the particles that gave rise to them
• Particle-flow (PF) reconstruction takes tracks and clusters of energy deposits as input and gives 

particle types and momenta as output
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Machine-Learned Particle Flow 
(MLPF)

• The Particle Flow (PF) Algorithm [1]
• Tries to identify and reconstruct all stable individual 

particles from collision events by combining information 
from different subdetectors (tracks, calorimeter clusters)

• Machine-Learned Particle-Flow (MLPF) [2]
• GPU accelerated, NN-based algorithm for PF
• Code available on GitHub

• Details on TensorFlow GNN model: ACAT2021 talk by J. Pata (and 
proceedings)

• Details on HPO: ACAT 2021 talk by E. Wulff (and proceedings)
• Details on PyTorch Transformer model: EPS-HEP talk by F. Mokhtar
• MLPF in CMS, CLIC and CLD: FCC-ee workshop presentation by F. Mokhtar

• See Nature Commun. Phys. 2024 and Phys. Rev. D 111, 
092015, 2025 for latest published results.

• Latest public CMS results: CMS-DP-2025-033
• We aim for a CMS paper in the near future. [2] Pata, J., Duarte, J., Vlimant, JR. et al. MLPF: efficient machine-learned particle-flow reconstruction using 

graph neural networks. Eur. Phys. J. C 81, 381 (2021). https://doi.org/10.1140/epjc/s10052-021-09158-w

The MLPF model

[1] CMS Collaboration https://cds.cern.ch/record/1194487?ln=en
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ML-based particle flow reconstruction 
workflow

Tracks and calorimetry MLPF event reconstruction

Physics simulation Dataset creation ML training Trained model

Model export
Data pre-

processingData selection

Event 
reconstruction
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MLPF
Improves event reconstruction using ML 
while keeping models portable and aimed 
at possible future deployment scenarios

Pata, J., Wulff, E., Mokhtar, F. et al. Improved particle-flow event reconstruction with scalable neural networks for 
current and future particle detectors. Commun Phys 7, 124 (2024). https://doi.org/10.1038/s42005-024-01599-5 

Based on electron-positron collision events in a 
CLIC-based detector geometry

Dataset: https://zenodo.org/records/8260741 
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MLPF timeline

doi:10.1038/s42005-024-01599-5 

202320222021

doi:10.1088/1742-6596/2438/1/012100
doi:10.1088/1742-6596/2438/1/012092 

http://cds.cern.ch/record/2842375 
https://arxiv.org/abs/2303.15053 

doi:10.1140/epjc/s10052-021-09158-w

ACAT’21 ACAT’22

Proof of concept Particle-level SOTA

Proof of concept
Event-level SOTA on full 

simulation

FastML’23, ML4Jets’23, ACAT’24 

2020 2024

Open data

Real detector
2025

doi:10.48550/arXiv.2503.00131 

Fine-tuning from one detector to 
another

Eur. J. Phys.

Commun. Phys

⏳ CMS paper

CMS-DP-2025-033

Phys. Rev. D.
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Highly diverse and granular datasets

• Highly diverse and granular 
datasets suitable for tracking, 
clustering and particle flow 
reconstruction

• Can be used for both 
supervised and unsupervised 
learning

Tracks and calorimeter clusters

Track
ECAL or HCAL cluster

Particles

Hit-based  
ML particle-flow 
reconstruction

Cluster-based  

ML particle-flow  

reconstru
ction

Calorimeter 
clustering

Charged particle 

tracking

Raw ECAL hit
Raw HCAL hit
Raw tracker hit
Raw Muon chamber hit

Raw detector hits

Raw tracker hit
Raw ECAL hit
Raw HCAL hit
Raw Muon chamber hit

Track
Raw ECAL hit
Raw HCAL hit
Raw Muon chamber hit

Tracks and calorimeter hits

Charged hadron
Photon
Neutral hadron
Electron
Muon

~10k / event

~100-300 / event

~300-500 / event
Pata, J., Wulff, E., Mokhtar, F. et al. Improved particle-flow event reconstruction with scalable neural networks for current 
and future particle detectors. Commun Phys 7, 124 (2024). https://doi.org/10.1038/s42005-024-01599-5 
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Portable distributed training

• The HPC AI chip landscape is diversifying, 
we need flexible and portable codes to 
make use of them

• MLPF training is portable and runs on 
CPU, NVIDIA and AMD GPUs as well as 
Intel Habana Gaudi cards

• We use PyTorch DDP to implement multi-
GPU training

Pata, J., Wulff, E., Mokhtar, F. et al. Improved particle-flow event reconstruction with scalable neural networks for 
current and future particle detectors. Commun Phys 7, 124 (2024). https://doi.org/10.1038/s42005-024-01599-5 
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MLPF scaling on VEGA
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Multi-node scaling of MLPF HPO
• Scaling of an HPO run of MLPF on 

the JURECA-DC-GPU system at the 
Jülich Supercomputer Centre (JSC), 4 
NVIDIA A100 and 2× 64 cores AMD 
EPYC 7742 per node

• Superlinear scaling due to ASHA re-
loading models when using fewer 
nodes

• ASHA + Bayesian optimization

• HPO lends itself very well to 
parallelization

Dataset used: Simulated particle-level events of ttbar and QCD with PU200 using Pythia8+Delphes3 
for machine learned particle flow (MLPF), https://doi.org/10.5281/zenodo.4559324 
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tuning

tuning
GNN

Transformer

Distributed hyperparameter 
optimization

• Final validation loss 
decreased by ~44% in CMS 
and ~34% in CLIC resulting 
in significant performance 
increases

• Runs on 24-96 A100 GPUs 
at the Flatiron Institute and 
JSC

 
• Used ~2400 GPU-hours for 

the CMS tuning and ~5000 
GPU-hours for CLIC

Pata, J., Wulff, E., Mokhtar, F. et al. Improved particle-flow 
event reconstruction with scalable neural networks for 
current and future particle detectors. Commun Phys 7, 124 
(2024). https://doi.org/10.1038/s42005-024-01599-5 
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Trial 1 Trial 2 Trial N
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Hyperparameter 
Optimization

Distributed 
training

HPO

CMS

Joosep Pata, Javier Duarte, Farouk Mokhtar, Eric Wulff, Jieun Yoo, Jean-Roch Vlimant, Maurizio 
Pierini and Maria Girone on behalf of the CMS Collaboration, doi:10.1088/1742-6596/2438/1/012100
Eric Wulff, Maria Girone and Joosep Pata, doi:10.1088/1742-6596/2438/1/012092 

CLIC
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Moving Forward
• HPC systems provide large numbers of powerful GPUs 

suitable for AI training
• Distributed training speeds up model development cycles 

and model training
• HPO significantly increased model performance in the 

example of MLPF
• We have already begun to see the benefits from 

engaging with the HPC community 
• CoE RAISE, interTwin, SPECTRUM, ODISSEE, etc.

• The SPECTRUM project is working on facilitating HPC 
access to the HEP and RA communities in Europe

• We are submitting more applications for EuroHPC JU 
research calls in the near future

• Computing is experiencing a rapid evolution of 
technology and techniques with large improvements in 
HW accelerators and software applications
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Eric Wulff
CTO for AI on HPC, CERN openlab

CERN IT Department 
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Backup

Eric Wulff       Vlaams Supercomputer Centrum User Day 62



Scaling laws for the MLPF models

• We trained models on datasets of 
varying size and fit power laws to the 
relationship between validation loss 
and dataset size

• As expected, larger datasets 
translates to better performance

• This motivates us to
• generate larger datasets in the future
• further improve training speed to keep 

runs within a reasonable time window
• consider multi-node training

Eric Wulff, Joosep Pata, Maria Girone, PASC24, https://pasc24.pasc-
conference.org/presentation/?id=pos141&sess=sess158
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