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Gaps and opportunities of large-scale heterogeneous HPC

RE-THINKING SCIENTIFIC WORKFLOWS
Simulation 
workflow [1]

• User’s perspective: 
• Find the most suitable hardware for a specific task  
• Implement cost-effective scaling
• Enable intertwined AI- and HPC-workflows

• HPC center’s perspective:
• Match the application diversity and allow for effective resource-sharing

Complex hardware Complex tasks



JUPITER - MODULAR ARCHITECTURE
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JUPITER – THE BOOSTER

• 1 ExaFLOP/s (FP64, HPL, no. 4 Top500)  
• NVIDIA Grace-Hopper GH200  
• 4 chips per compute node  
• ~6,000 nodes  

• NVIDIA Mellanox NDR  
• 4 x NDR200 NICs per compute node

• BullSequana XH3000  
• Direct Liquid Cooled blades  
• 2 compute node per blade 

120 GB LPDDR5X



CFD/AI INTEGRATION
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MULTI-PHYSICS SIMULATIONS WITH M-AIA



M-AIA (multiphysics Aerodynamisches Institut Aachen) [2]
• Open-source CFD / multi-physics simulation framework developed for +25 years
• Developed at RWTH (AIA) and Forschungszentrum Jülich (JSC)

• ~ 360k lines of code (C/C++, Markdown, Python, etc.) with > 50 active branches
• C++ / MPI / OpenMP / PSTL / HIP / parallel I/O

M-AIA

Fully-resolved particle simulation

Particle flow in the human respiratory tractJet noise (engine with chevrons) Propeller flow



M-AIA
Multi-physics simulations [2]
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Applications

biofluidmechanics aeroacoustics technical moving boundaries particles



M-AIA SCALINGS [2,6]

LB PSTL JEDI / JUPITER scaling
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Coupled FV / LPT scaling on Hawk
11.9 x 106 part., 1.115 x 109 cells



AI FOR CFD APPLICATIONS



AERODYNAMIC PREDICTIONS

Active Drag Reduction (ADR)
• ADR spanwise traveling transversal     

surface waves  
• Reduce energy consumption and emissions:
• Drag reduction

• Net power savings

• Vision:  
• Short/middle-term: Understand mechanisms of 

ADR, reduce simulation costs, and optimize the 
design choices  

• Long-term: Application in airplanes in cruise 
flight, highspeed trains, etc. 

• Simulation-based analysis requires HPC resources 



ACTIVE VS. PASSIVE DRAG REDUCTION 

Active DR, e.g., oscillating wall Passive DR, e.g., riblet surface
⊕ Flexible to flow conditions ⊖ Tailored to flow conditions, hence less flexible
⊕ Higher DR / net power savings ⊖ Lower DR / net power savings
⊖ Power input and technological overhead ⊕ No power input
⊖ Low technological readiness level ⊕ Medium technological readiness level

Example: Spanwise oscillating wall Example: Riblet surface



SPANWISE TRAVELLING SURFACE WAVE SIMULATIONS

Research questions
• What is the drag/net power (               ) dependence on the actuation parameters?
• What are                  for non-simulated cases?

<latexit sha1_base64="36CnQ2Km15dGoOKlyOiSdOMmdaA=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgQcquSPVYrAePFewHbJclm6ZtaDZZklmhLP0ZXjwo4tVf481/Y9ruQVsfDDzem2FmXpQIbsB1v53C2vrG5lZxu7Szu7d/UD48ahuVaspaVAmluxExTHDJWsBBsG6iGYkjwTrRuDHzO09MG67kI0wSFsRkKPmAUwJW8hvh3UUzzCSDaViuuFV3DrxKvJxUUI5mWP7q9RVNYyaBCmKM77kJBBnRwKlg01IvNSwhdEyGzLdUkpiZIJufPMVnVunjgdK2JOC5+nsiI7ExkziynTGBkVn2ZuJ/np/C4CbIuExSYJIuFg1SgUHh2f+4zzWjICaWEKq5vRXTEdGEgk2pZEPwll9eJe3Lqler1h6uKvXbPI4iOkGn6Bx56BrV0T1qohaiSKFn9IreHHBenHfnY9FacPKZY/QHzucPxw6Q8w==</latexit>

CD, Pnet
<latexit sha1_base64="36CnQ2Km15dGoOKlyOiSdOMmdaA=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgQcquSPVYrAePFewHbJclm6ZtaDZZklmhLP0ZXjwo4tVf481/Y9ruQVsfDDzem2FmXpQIbsB1v53C2vrG5lZxu7Szu7d/UD48ahuVaspaVAmluxExTHDJWsBBsG6iGYkjwTrRuDHzO09MG67kI0wSFsRkKPmAUwJW8hvh3UUzzCSDaViuuFV3DrxKvJxUUI5mWP7q9RVNYyaBCmKM77kJBBnRwKlg01IvNSwhdEyGzLdUkpiZIJufPMVnVunjgdK2JOC5+nsiI7ExkziynTGBkVn2ZuJ/np/C4CbIuExSYJIuFg1SgUHh2f+4zzWjICaWEKq5vRXTEdGEgk2pZEPwll9eJe3Lqler1h6uKvXbPI4iOkGn6Bx56BrV0T1qohaiSKFn9IreHHBenHfnY9FacPKZY/QHzucPxw6Q8w==</latexit>

CD, Pnet
In total 88 configurations… 8.3TB of data



SIMULATION METHOD
M-AIA on structured meshes [7]

Simulating TBLs with a finite-volume method 
• Solves the compressible Navier-Stokes equations:
• AUSM method for the formulation of the inviscid fluxes
• MUSCL scheme for flow quantity reconstruction at the 

cell surfaces
• 5-stage Runge-Kutta for temporal integration
• LES modeling via MILES approach (numerical 

dissipation models viscous dissipation)
• Synthetic turbulence generation at inlet

<latexit sha1_base64="yMIarGdRcQpqJRTEOEfciDr/BvU="></latexit>

Reω = 1,000,Ma = 0.1

• Uses a structured, body-fitted mesh

• Arbitray Lagrangian Eulerian (ALE) for mesh deformation

• Simulation parameters:



COMBINING MULTIPLE CNNS
Convolutional AutoEncoders (CAEs) [8,9]

Training
• First train CAE-NN section of the network
• Once the CAE-NN network provides 

satisfactory results, the rest of the 
network for the prediction of the QoIs is 
trained

• Train for                  separately
<latexit sha1_base64="36CnQ2Km15dGoOKlyOiSdOMmdaA=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgQcquSPVYrAePFewHbJclm6ZtaDZZklmhLP0ZXjwo4tVf481/Y9ruQVsfDDzem2FmXpQIbsB1v53C2vrG5lZxu7Szu7d/UD48ahuVaspaVAmluxExTHDJWsBBsG6iGYkjwTrRuDHzO09MG67kI0wSFsRkKPmAUwJW8hvh3UUzzCSDaViuuFV3DrxKvJxUUI5mWP7q9RVNYyaBCmKM77kJBBnRwKlg01IvNSwhdEyGzLdUkpiZIJufPMVnVunjgdK2JOC5+nsiI7ExkziynTGBkVn2ZuJ/np/C4CbIuExSYJIuFg1SgUHh2f+4zzWjICaWEKq5vRXTEdGEgk2pZEPwll9eJe3Lqler1h6uKvXbPI4iOkGn6Bx56BrV0T1qohaiSKFn9IreHHBenHfnY9FacPKZY/QHzucPxw6Q8w==</latexit>

CD, Pnet

• During testing, the decoder part of the CAE-NN initially reconstructs the higher-resolution velocity 
fields from the latent space, which is fed to the rest of the corresponding network. 

CAE-PNCAE-NNActuation
Parameters

concatenated



COMBINING MULTIPLE CNNS
Convolutional AutoEncoders (CAEs) [8,9]

Results: direct comparison of LES and the reconstrution from the CAE-NN

Cross-sections of the scaled streamwise (u ∗ ) (left) and spanwise (w ∗ ) (right) velocity
components from the LES (Input) and reconstruction by CAE-NN (Output).



A deeper look into the performance of the CAE

COMBINING MULTIPLE CNNS
Results [8-10]

• Measure CAE’s scale-specific 
accuracy via NA-MEMD analysis 

• Intrinsic Mode Functions (IMFs) 
are modal representations 
categorized with respect to flow 
features that share a certain range 
of scales    

• Large-scale flow features 
contained in IMF5 of the 
reconstructions are in satisfactory 
agreement 

• Agreement is worse for the small-
scale structures visible from IMF1

NA-MEMD = Noise-Assisted Multivariate Empirical Mode Decomposition 



COMBINING MULTIPLE CNNS
Convolutional AutoEncoders (CAEs) [8,9]

Results: Performance of the CAE-PN

Satisfactory interpolation performance. Extrapolation performance not good for net power saving



TRANSFORMERS FOR TEMPORAL PREDICTION
Architecture [11,12]

Idea: Perform temporal predictions to replace expensive LES time steps 

<latexit sha1_base64="Hx7bkNEJG0BkBLWWrCs+YMevN3o="></latexit>
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,ω = 1.0,ε = 0.06

empirically chosen



TRANSFORMERS FOR TEMPORAL PREDICTION
Results: Prediction performance (velocity components) [11,12]
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TRANSFORMERS FOR TEMPORAL PREDICTION
Results: Prediction (MSE, DMD) and computational performance [11,12]

LES Transformer Factor

wall-time (node sec.) 36.48 0.685 53.3 (speed-up)

memory (GB) 466.69 0.422 1105.9 (memory savings)

Model accuracy with increasing no. of time steps

DMD analysis: first mode comparison for              .
<latexit sha1_base64="okMzPurZyrqqB9kzNtCStc9ALSI=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoPgKewGiV6EoB48RjAPyC5hdjKbDJl9MNMrhCW/4cWDIl79GW/+jZNkD5pY0FBUddPd5SdSaLTtb6uwtr6xuVXcLu3s7u0flA+P2jpOFeMtFstYdX2quRQRb6FAybuJ4jT0Je/449uZ33niSos4esRJwr2QDiMRCEbRSK57xyVSgn11XeuXK3bVnoOsEicnFcjR7Je/3EHM0pBHyCTVuufYCXoZVSiY5NOSm2qeUDamQ94zNKIh1142v3lKzowyIEGsTEVI5urviYyGWk9C33SGFEd62ZuJ/3m9FIMrLxNRkiKP2GJRkEqCMZkFQAZCcYZyYghlSphbCRtRRRmamEomBGf55VXSrlWderX+cFFp3ORxFOEETuEcHLiEBtxDE1rAIIFneIU3K7VerHfrY9FasPKZY/gD6/MHGa6RFw==</latexit>

!tr = 2
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CONVOLUTIONAL DEFILTERING MODELS (CDMS)
Super-Resolution modeling

The general idea behind CDMs [13]

• Makes use of the idea of diffusion models
• Model a Markov chain as forward diffusion process with continuous Gaussian noising

• Change pixel values slightly in the area of the Gaussian distribution function

pixel 1

pixel 2
120

90

pixel 1

pixel 2

probability density

120

90

higher 
probability

lower 
probabilityrandom new sample

110

80

noised pixel 1

noised pixel 2

<latexit sha1_base64="yNS6TDCmS2i5wWPZ5u5NuaIPp/A=">AAACBHicbVBNS8NAEN3Ur1q/oh57CRahgpREpHoRil48VugXNDFsttt26WYTdidCCT148a948aCIV3+EN/+N2zYHbX0w8Hhvhpl5QcyZAtv+NnIrq2vrG/nNwtb2zu6euX/QUlEiCW2SiEeyE2BFORO0CQw47cSS4jDgtB2MbqZ++4FKxSLRgHFMvRAPBOszgkFLvll0UzeggH1wmSjbp86JO/FTuHIm9w3fLNkVewZrmTgZKaEMdd/8cnsRSUIqgHCsVNexY/BSLIERTicFN1E0xmSEB7SrqcAhVV46e2JiHWulZ/UjqUuANVN/T6Q4VGocBrozxDBUi95U/M/rJtC/9FIm4gSoIPNF/YRbEFnTRKwek5QAH2uCiWT6VosMscQEdG4FHYKz+PIyaZ1VnGqlendeql1nceRRER2hMnLQBaqhW1RHTUTQI3pGr+jNeDJejHfjY96aM7KZQ/QHxucPR0iXOw==</latexit>

{�t 2 (0, 1)}Tt=1

variance schedule 
controls step size
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N (0, I)
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q(xt|xt→1)

CONVOLUTIONAL DEFILTERING MODELS (CDMS)
Super-Resolution modeling

The general idea behind CDMs [13]

• Now train a U-Net to model the reverse Markov process.
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pω(xt→1|xt)

<latexit sha1_base64="OUxPT9/4fJTbRjoODYlw2deSdAo=">AAACKnicbVDLSsNAFJ34rPVVdekmWIR2YUlEqgiFqhuXFdIHNDVMptN26OTBzI20xHyPG3/FTRdKceuHOH0sauuBgcM553LnHjfkTIJhjLW19Y3Nre3UTnp3b//gMHN0XJNBJAitkoAHouFiSTnzaRUYcNoIBcWey2nd7T9M/PoLFZIFvgXDkLY83PVZhxEMSnIyd6FjQ48Czg2c2Li1knxpQbHydiiCthNDyUyercUsXJjJ68CBvJPJGgVjCn2VmHOSRXNUnMzIbgck8qgPhGMpm6YRQivGAhjhNEnbkaQhJn3cpU1FfexR2Yqnpyb6uVLaeicQ6vmgT9XFiRh7Ug49VyU9DD257E3E/7xmBJ2bVsz8MALqk9miTsR1CPRJb3qbCUqADxXBRDD1V530sMAEVLtpVYK5fPIqqV0WzGKh+HSVLd/P60ihU3SGcshE16iMHlEFVRFBb+gDfaIv7V0baWPtexZd0+YzJ+gPtJ9fct2nTw==</latexit>

pω(x0:T ) = pω(xT )
T∏

t=1

pω(xt→1|xt)

• are the parameters of the neural network
• We would like to minimize the negative log-likelihood:

<latexit sha1_base64="5bCyd0gYv8CeZMXZW/avxKBuZUk=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8cK9gPaUDbbTbt2sxt2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemAhu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmayFGwTqIZiUPB2uH4dua3n5g2XMkHnCQsiMlQ8ohTglZq9XDEkPTLFa/qzeGuEj8nFcjR6Je/egNF05hJpIIY0/W9BIOMaORUsGmplxqWEDomQ9a1VJKYmSCbXzt1z6wycCOlbUl05+rviYzExkzi0HbGBEdm2ZuJ/3ndFKPrIOMySZFJulgUpcJF5c5edwdcM4piYgmhmttbXToimlC0AZVsCP7yy6ukdVH1a9Xa/WWlfpPHUYQTOIVz8OEK6nAHDWgChUd4hld4c5Tz4rw7H4vWgpPPHMMfOJ8/p4mPMw==</latexit>

ω

<latexit sha1_base64="l9Kebqu5TH/2oUr8R4JhXqYJRqs=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBHqwpKIVJdFNy4r2Ac0IUymk3bo5MHMjRhC/RU3LhRx64e482+ctllo64ELh3Pu5d57/ERwBZb1baysrq1vbJa2yts7u3v75sFhR8WppKxNYxHLnk8UEzxibeAgWC+RjIS+YF1/fDP1uw9MKh5H95AlzA3JMOIBpwS05JmVM0fEQ5x4DowYkNqjZ516ZtWqWzPgZWIXpIoKtDzzyxnENA1ZBFQQpfq2lYCbEwmcCjYpO6liCaFjMmR9TSMSMuXms+Mn+EQrAxzEUlcEeKb+nshJqFQW+rozJDBSi95U/M/rpxBcuTmPkhRYROeLglRgiPE0CTzgklEQmSaESq5vxXREJKGg8yrrEOzFl5dJ57xuN+qNu4tq87qIo4SO0DGqIRtdoia6RS3URhRl6Bm9ojfjyXgx3o2PeeuKUcxU0B8Ynz9iiZP4</latexit>

→ log pω(x0)



<latexit sha1_base64="AlCap954dgnwWugM2N1pt58POqg="></latexit>

→ log pω(x0) = → log

∫
pω(x0:T )dx1:T

↑ →Eq(x1:T |x0)

[
log

pω(x0:T )

q(x1:T |x0)

]

= →Eq(x1:T |x0)

[
DKL (q(tT |x0)||p(xT )) +

∑

t>1

DKL

(
q(xt→1|xt, x0)||pω(xt→1|xt

)
)
→ log pω(x0|x1)

]

= . . .

CONVOLUTIONAL DEFILTERING MODELS (CDMS)
Super-Resolution modeling

The general idea behind CDMs [13]

Towards a loss function of the U-Net:

Jensen’s 
inequality

is untractable (too many paths)

Evidence Lower Bound (ELBO)

independent of 𝜃 small

true posterior 
(but we are missing the true      )<latexit sha1_base64="GIKDn9uSq/AAhnEr2/7KvaugpSA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qnn9kplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs3ziletVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AENvo2q</latexit>x0

<latexit sha1_base64="+u2ntTKktAdiwVijCj56XyICKZw="></latexit>

pω(xt→1|xt) = N (µω,ωω)

<latexit sha1_base64="ARlMTivgsbCX1wZoF/hNDtKeaLA="></latexit>

q(xt→1|xt, x0) = N (µ̃t, ω̃t)

(Gaussian with fixed σt)

(Gaussian)



CONVOLUTIONAL DEFILTERING MODELS (CDMS)
Super-Resolution modeling

The general idea behind CDMs [13]

Towards a loss function of the U-Net:

<latexit sha1_base64="BIbN9R1Ahg4omZlLCuUve1DO2P0="></latexit>

N (µ̃t, ω̃t)
<latexit sha1_base64="iSyZriAWBMbT18rl4K+zPDbU8l4=">AAACCXicdVBNS8NAEN34WetX1aOXxSIoSEkkWr0VvXgSBatCU8Jku20Xd5OwOxFK6NWLf8WLB0W8+g+8+W/cfggq+mDg8d4MM/OiVAqDrvvhTExOTc/MFuaK8wuLS8ulldVLk2Sa8TpLZKKvIzBcipjXUaDk16nmoCLJr6Kb44F/dcu1EUl8gb2UNxV0YtEWDNBKYYkGCrDLQOan/a1AZWGAXY6wExjRURDidlgqu5U91zvcq9IR8XctcT2/6vvUq7hDlMkYZ2HpPWglLFM8RibBmIbnptjMQaNgkveLQWZ4CuwGOrxhaQyKm2Y+/KRPN63Sou1E24qRDtXvEzkoY3oqsp2Du81vbyD+5TUybB80cxGnGfKYjRa1M0kxoYNYaEtozlD2LAGmhb2Vsi5oYGjDK9oQvj6l/5PL3Yq3X9k/98u1o3EcBbJONsgW8UiV1MgJOSN1wsgdeSBP5Nm5dx6dF+d11DrhjGfWyA84b5/sH5qC</latexit>

N (µω,ωt)

<latexit sha1_base64="XxWRMo2K+hyWZZAznQQ3a5vU24M=">AAAB8XicdVDLSsNAFJ34rPVVdelmsAiuQlLSVndFNy4r2Ac2oUymk3boZBJmboQS+hduXCji1r9x5984fQgqeuDC4Zx7ufeeMBVcg+N8WCura+sbm4Wt4vbO7t5+6eCwrZNMUdaiiUhUNySaCS5ZCzgI1k0VI3EoWCccX838zj1TmifyFiYpC2IylDzilICR7vw46/swYkD6pbJjVx33olrHC+JVDHFcr+552LWdOcpoiWa/9O4PEprFTAIVROue66QQ5EQBp4JNi36mWUromAxZz1BJYqaDfH7xFJ8aZYCjRJmSgOfq94mcxFpP4tB0xgRG+rc3E//yehlE50HOZZoBk3SxKMoEhgTP3scDrhgFMTGEUMXNrZiOiCIUTEhFE8LXp/h/0q7Ybs2u3XjlxuUyjgI6RifoDLmojhroGjVRC1Ek0QN6Qs+Wth6tF+t10bpiLWeO0A9Yb58cFJE8</latexit>µω
<latexit sha1_base64="8wydjTGjLTKOk42qe02ERqs8uH8=">AAAB7HicdVDLSsNAFJ3UV62vqks3g0VwFSY1remu6MZlBdMW2lAm00k7dDIJMxOhhH6DGxeKuPWD3Pk3Th+Cih64cDjnXu69J0w5UxqhD6uwtr6xuVXcLu3s7u0flA+P2irJJKE+SXgiuyFWlDNBfc00p91UUhyHnHbCyfXc79xTqVgi7vQ0pUGMR4JFjGBtJL8fZwM9KFeQ3Wgg1/UgsmuoWnVrhqCLquc50LHRAhWwQmtQfu8PE5LFVGjCsVI9B6U6yLHUjHA6K/UzRVNMJnhEe4YKHFMV5ItjZ/DMKEMYJdKU0HChfp/IcazUNA5NZ4z1WP325uJfXi/TkRfkTKSZpoIsF0UZhzqB88/hkElKNJ8agolk5lZIxlhiok0+JRPC16fwf9Ku2k7drt+6lebVKo4iOAGn4Bw44BI0wQ1oAR8QwMADeALPlrAerRfrddlasFYzx+AHrLdPWQGPEg==</latexit>µt

<latexit sha1_base64="RTr6OoSwngdxH9vnmaARbaEqYY8="></latexit>

. . . = Eq(x1:T |x0)

[
∑

t>1

1

2ω2
t

||µ̃t → µω(xt, t)||2
]

= Eq(x1:T |x0)

[
∑

t>1

ε2
t

2ω2
tϑt(1→ ϑt)

||ϖ→ ϖω(xt, t)||2
]

<latexit sha1_base64="Y7CscdYnzEJJnMt9bf9EWYByJZg="></latexit>

µ̃t =
1

→
ωt

(
xt ↑

εt→
1↑ ω̄t

ϑ

)

µω(xt, t) =
1

→
ωt

(
xt ↑

εt→
1↑ ω̄t

ϑω(xt, t)

)reparametrization

noise difference

backward process forward process



CONVOLUTIONAL DEFILTERING MODELS (CDMS)

Instead of to pictures, apply to physical fields (gradually increase filter width)

Streamwise velocity component of a turbulent flow field

Super-Resolution modeling: application to turbulent flows [9]



CONVOLUTIONAL DEFILTERING MODELS (CDMS)

Use 3D U-Nets to perform the defiltering

Super-Resolution modeling: application to turbulent flows [9]

• Input     is filtered (Gaussian filter) to   
• Add small noise 𝜖 to avoid overfitting to 

filter width  
• Provide     to the 3D U-Net   
• Loss-function as   
• Pixel-to-pixel
• Gradient-to-gradient
• Physics-based, etc.   

• The output is the “defiltered” 
• Repeat by increasing filter width 

<latexit sha1_base64="wF9UNcg9VoS4m5MXBKV+QA8JZT4=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaNQY9ELx4hkUeEDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJb3ZpygH9GB5CFn1Fip/tArltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1Ku1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+ALxTjOk=</latexit>

Z
<latexit sha1_base64="fztgbZMwqPVIk5BsTw3LuHp3Esc=">AAAB8HicbVBNS8NAEN3Ur1q/qh69BIvgqSQi1WPRi8cK9kPbUDababt0dxN2J0IJ/RVePCji1Z/jzX/jts1Bqw8GHu/NMDMvTAQ36HlfTmFldW19o7hZ2tre2d0r7x+0TJxqBk0Wi1h3QmpAcAVN5Cigk2igMhTQDsfXM7/9CNrwWN3hJIFA0qHiA84oWum+h1xEkD1M++WKV/XmcP8SPycVkqPRL3/2opilEhQyQY3p+l6CQUY1ciZgWuqlBhLKxnQIXUsVlWCCbH7w1D2xSuQOYm1LoTtXf05kVBozkaHtlBRHZtmbif953RQHl0HGVZIiKLZYNEiFi7E7+96NuAaGYmIJZZrbW102opoytBmVbAj+8st/Seus6teqtdvzSv0qj6NIjsgxOSU+uSB1ckMapEkYkeSJvJBXRzvPzpvzvmgtOPnMIfkF5+MbGVmQnw==</latexit>

Z̃

<latexit sha1_base64="oijmQlfsDrm++Gm4TLQocfg+4Dc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BL54kAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c781hMqzWP5YMYJ+hEdSB5yRo2V6ve9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCa3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpHlR9irlSv2yVL3J4sjDCZzCOXhwBVW4gxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD6ojjN0=</latexit>

N

<latexit sha1_base64="TX2EBwYTOi8KxkxdIxT0zoxXh0I=">AAACAHicbVBNS8NAEN34WetX1IMHL6tF8FQSkepFKHrxWMF+0KaUzXbTLt1swu5EKCEX/4oXD4p49Wd489+4bXPQ1gcDj/dmmJnnx4JrcJxva2l5ZXVtvbBR3Nza3tm19/YbOkoUZXUaiUi1fKKZ4JLVgYNgrVgxEvqCNf3R7cRvPjKleSQfYByzbkgGkgecEjBSzz70hgTSduZpIHSkmEiPs/Q6a/fsklN2psCLxM1JCeWo9ewvrx/RJGQSqCBad1wnhm5KFHAqWFb0Es1is4IMWMdQSUKmu+n0gQyfGqWPg0iZkoCn6u+JlIRaj0PfdIYEhnrem4j/eZ0EgqtuymWcAJN0tihIBIYIT9LAfa4YBTE2hFDFza2YDokiFExmRROCO//yImmcl91KuXJ/Uare5HEU0BE6QWfIRZeoiu5QDdURRRl6Rq/ozXqyXqx362PWumTlMwfoD6zPH1PKluQ=</latexit>

Ẑ
!
= Z

<latexit sha1_base64="fztgbZMwqPVIk5BsTw3LuHp3Esc=">AAAB8HicbVBNS8NAEN3Ur1q/qh69BIvgqSQi1WPRi8cK9kPbUDababt0dxN2J0IJ/RVePCji1Z/jzX/jts1Bqw8GHu/NMDMvTAQ36HlfTmFldW19o7hZ2tre2d0r7x+0TJxqBk0Wi1h3QmpAcAVN5Cigk2igMhTQDsfXM7/9CNrwWN3hJIFA0qHiA84oWum+h1xEkD1M++WKV/XmcP8SPycVkqPRL3/2opilEhQyQY3p+l6CQUY1ciZgWuqlBhLKxnQIXUsVlWCCbH7w1D2xSuQOYm1LoTtXf05kVBozkaHtlBRHZtmbif953RQHl0HGVZIiKLZYNEiFi7E7+96NuAaGYmIJZZrbW102opoytBmVbAj+8st/Seus6teqtdvzSv0qj6NIjsgxOSU+uSB1ckMapEkYkeSJvJBXRzvPzpvzvmgtOPnMIfkF5+MbGVmQnw==</latexit>

Z̃

<latexit sha1_base64="fztgbZMwqPVIk5BsTw3LuHp3Esc=">AAAB8HicbVBNS8NAEN3Ur1q/qh69BIvgqSQi1WPRi8cK9kPbUDababt0dxN2J0IJ/RVePCji1Z/jzX/jts1Bqw8GHu/NMDMvTAQ36HlfTmFldW19o7hZ2tre2d0r7x+0TJxqBk0Wi1h3QmpAcAVN5Cigk2igMhTQDsfXM7/9CNrwWN3hJIFA0qHiA84oWum+h1xEkD1M++WKV/XmcP8SPycVkqPRL3/2opilEhQyQY3p+l6CQUY1ciZgWuqlBhLKxnQIXUsVlWCCbH7w1D2xSuQOYm1LoTtXf05kVBozkaHtlBRHZtmbif953RQHl0HGVZIiKLZYNEiFi7E7+96NuAaGYmIJZZrbW102opoytBmVbAj+8st/Seus6teqtdvzSv0qj6NIjsgxOSU+uSB1ckMapEkYkeSJvJBXRzvPzpvzvmgtOPnMIfkF5+MbGVmQnw==</latexit>

Z̃



CONVOLUTIONAL DEFILTERING MODELS (CDMS)

Results of the reconstruction

Gradient: 3.5% error on averageTested filter width N=5: 0.5% error on average

Super-Resolution modeling: application to turbulent flows [9]



CONVOLUTIONAL DEFILTERING MODELS (CDMS)

Results and future integration into simulations
Super-Resolution modeling: application to turbulent flows [9]

PSD of the instantaneous 
velocity gradients

CPU GPU

wall
WMLES

<latexit sha1_base64="vlAgQrXsH5EqZkx5YQ0Vno3wwpo=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lEqseiF48V7Ac0oWw203bpZhN2J0IJ/RtePCji1T/jzX/jts1Bqw8GHu/NMDMvTKUw6LpfTmltfWNzq7xd2dnd2z+oHh51TJJpDm2eyET3QmZACgVtFCihl2pgcSihG05u5373EbQRiXrAaQpBzEZKDAVnaCXfRyEjyP10LGaDas2tuwvQv8QrSI0UaA2qn36U8CwGhVwyY/qem2KQM42CS5hV/MxAyviEjaBvqWIxmCBf3DyjZ1aJ6DDRthTShfpzImexMdM4tJ0xw7FZ9ebif14/w+F1kAuVZgiKLxcNM0kxofMAaCQ0cJRTSxjXwt5K+ZhpxtHGVLEheKsv/yWdi7rXqDfuL2vNmyKOMjkhp+SceOSKNMkdaZE24SQlT+SFvDqZ8+y8Oe/L1pJTzByTX3A+vgF+P5IA</latexit>

�̃

<latexit sha1_base64="vlAgQrXsH5EqZkx5YQ0Vno3wwpo=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lEqseiF48V7Ac0oWw203bpZhN2J0IJ/RtePCji1T/jzX/jts1Bqw8GHu/NMDMvTKUw6LpfTmltfWNzq7xd2dnd2z+oHh51TJJpDm2eyET3QmZACgVtFCihl2pgcSihG05u5373EbQRiXrAaQpBzEZKDAVnaCXfRyEjyP10LGaDas2tuwvQv8QrSI0UaA2qn36U8CwGhVwyY/qem2KQM42CS5hV/MxAyviEjaBvqWIxmCBf3DyjZ1aJ6DDRthTShfpzImexMdM4tJ0xw7FZ9ebif14/w+F1kAuVZgiKLxcNM0kxofMAaCQ0cJRTSxjXwt5K+ZhpxtHGVLEheKsv/yWdi7rXqDfuL2vNmyKOMjkhp+SceOSKNMkdaZE24SQlT+SFvDqZ8+y8Oe/L1pJTzByTX3A+vgF+P5IA</latexit>

�̃
<latexit sha1_base64="vlAgQrXsH5EqZkx5YQ0Vno3wwpo=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lEqseiF48V7Ac0oWw203bpZhN2J0IJ/RtePCji1T/jzX/jts1Bqw8GHu/NMDMvTKUw6LpfTmltfWNzq7xd2dnd2z+oHh51TJJpDm2eyET3QmZACgVtFCihl2pgcSihG05u5373EbQRiXrAaQpBzEZKDAVnaCXfRyEjyP10LGaDas2tuwvQv8QrSI0UaA2qn36U8CwGhVwyY/qem2KQM42CS5hV/MxAyviEjaBvqWIxmCBf3DyjZ1aJ6DDRthTShfpzImexMdM4tJ0xw7FZ9ebif14/w+F1kAuVZgiKLxcNM0kxofMAaCQ0cJRTSxjXwt5K+ZhpxtHGVLEheKsv/yWdi7rXqDfuL2vNmyKOMjkhp+SceOSKNMkdaZE24SQlT+SFvDqZ8+y8Oe/L1pJTzByTX3A+vgF+P5IA</latexit>

�̃
<latexit sha1_base64="vlAgQrXsH5EqZkx5YQ0Vno3wwpo=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lEqseiF48V7Ac0oWw203bpZhN2J0IJ/RtePCji1T/jzX/jts1Bqw8GHu/NMDMvTKUw6LpfTmltfWNzq7xd2dnd2z+oHh51TJJpDm2eyET3QmZACgVtFCihl2pgcSihG05u5373EbQRiXrAaQpBzEZKDAVnaCXfRyEjyP10LGaDas2tuwvQv8QrSI0UaA2qn36U8CwGhVwyY/qem2KQM42CS5hV/MxAyviEjaBvqWIxmCBf3DyjZ1aJ6DDRthTShfpzImexMdM4tJ0xw7FZ9ebif14/w+F1kAuVZgiKLxcNM0kxofMAaCQ0cJRTSxjXwt5K+ZhpxtHGVLEheKsv/yWdi7rXqDfuL2vNmyKOMjkhp+SceOSKNMkdaZE24SQlT+SFvDqZ8+y8Oe/L1pJTzByTX3A+vgF+P5IA</latexit>

�̃
<latexit sha1_base64="vlAgQrXsH5EqZkx5YQ0Vno3wwpo=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lEqseiF48V7Ac0oWw203bpZhN2J0IJ/RtePCji1T/jzX/jts1Bqw8GHu/NMDMvTKUw6LpfTmltfWNzq7xd2dnd2z+oHh51TJJpDm2eyET3QmZACgVtFCihl2pgcSihG05u5373EbQRiXrAaQpBzEZKDAVnaCXfRyEjyP10LGaDas2tuwvQv8QrSI0UaA2qn36U8CwGhVwyY/qem2KQM42CS5hV/MxAyviEjaBvqWIxmCBf3DyjZ1aJ6DDRthTShfpzImexMdM4tJ0xw7FZ9ebif14/w+F1kAuVZgiKLxcNM0kxofMAaCQ0cJRTSxjXwt5K+ZhpxtHGVLEheKsv/yWdi7rXqDfuL2vNmyKOMjkhp+SceOSKNMkdaZE24SQlT+SFvDqZ8+y8Oe/L1pJTzByTX3A+vgF+P5IA</latexit>
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CDM (2.)

(1.)

(3.)

Using CDMs in WMLES

1. Zero-degree interpolation of 
the LES fields close to wall

2. Provide interpolated fields 
to CDM 

3. Output from CDM back to 
LES, e.g., the wall-shear 
stresses 

• Allocation of a DNS grid  
• Lower memory foot print (only 

at layers close to the wall and 
for selected quantities)



RUNNING AI EFFICIENTLY AT SCALE ON HPC SYSTEMS



EFFICIENT TRAINING IN PARALLEL
Bringing training to GPUs [9]

Most common case: Data parallelism
• Data Distributed Parallel with, e.g., PyTorch-DDP, Horovod, 

DeepSpeed
• A mini batch is split over the number of workers             

(GPUs) = micro batches

• Each worker 
• has a copy of the architecture
• works only on a micro batch

• A supervisor node
• collects all gradients
• updates the weights 
• sends model updates to the workers

Data parallelism

Model parallelism



EFFICIENT TRAINING IN PARALLEL
Bringing training to GPUs

To make the most efficient use of GPUs, the full memory should be used
• Reduces limited computation per GPU
• Reduces communication overhead

Large batch size problem
• The batch size is a function of the number of GPUs
• updates of the model parameter happen too sparsely
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B = f(no. GPUs)

Despite of great scaling, the accuracy of the 
model is not improving

Adapting the learning rate might help



EFFICIENT TRAINING IN PARALLEL
Improving the training of Neural Networks

Model accuracy improvement / faster convergence
• Use advanced optimizers such as Adam / use adpative learning rate methods
• Make sure not to exceed a limiting batch size (by using, e.g., too many GPUs)
• Use the Adaptive Summation Algorithm (AdaSum)
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~gr =
1

2
(~g1 + ~g2)
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EFFICIENT TRAINING IN PARALLEL
Improving the training of Neural Networks

Training speed-up with Automatic Mixed Precision (AMP)

FP16_NN_FW // Compute network forward pass in FP16 
L = FP32_L(X,W) // Compute loss in FP32
L = alpha * L // Scale by a large factor to ensure 

// representability in FP16
FP16 res = FP_16_NN_BW // Compute backward pass in FP16 
if!(res == NAN || res == INF) // Check for NAN / INF
{

grad = 1/z grad // Unscale gradients 
updateOpt // Update optimizer 

}



EFFICIENT TRAINING IN PARALLEL
Improving the training of Neural Networks

Training speed-up with the cuDNN autotuner
• Many compute kernels are tuned for NVIDIA GPUs
• Using the cuDNN library runs benchmarks on the computation and automatically 

selects the most efficient kernels 

Gradient accumulation
• Reduces the AllReduce communications
• First sums all gradients in a bucket and fuses all gradients in a single parallel 

operation
• Overlaps computation and communication (asynchronous communication)



EFFICIENT TRAINING IN PARALLEL
Improving the training of Neural Networks

Training speed-up with CUDA-aware MPI
• Makes use of the direct connection between GPU and 

network link

Training speed-up with improved I/O
• Play around with multi-process data loaders such as 

NVIDIA DALI



EFFICIENT TRAINING IN PARALLEL
Improving the training of Neural Networks [9]
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E = 0.963

Improvement of up to 90% using
• AMP
• cuDNN
• Gradient accumulation
• CUDA-aware MPI

Scaling of a DL-library on the 
(almost) whole JUWELS Booster 
with up to 96% efficiency



EFFICIENT TRAINING IN PARALLEL
Improving the training of Neural Networks: Hyperparameter Optimization *

Resource Adaptive Successive Doubling Algorithm (RASDA) [14]

* More details about HPO: Visit Eric Wulff’s talk this afternoon



SUMMARY, CONCLUSIONS, ONGOING AND NEXT STEPS



SUMMARY, CONCLUSIONS, ONGOING AND NEXT STEPS

• There exist various methods for physics-aware AI model training 
• Note: the methods shown are just an excerpt, there is a whole zoo of models

• The choice of model and its parameters is highly dependent on the considered case
• Note: some methods work better than others (e.g., PINNs vs. DNNs, PC-AEs vs. AEs)
• Hyperparameter tuning is certainly required for model improvement
• Training costs need to be considered

• Next and ongoing steps:
• Full coupling of simulations and training / inference *
• Hyperparameter optimization for model tuning
• Integration with the itwinai ** and AI4HPC *** libraries

C API Python APIFortran API

C Kernel

PhyDLL
Physics Deep 

Learning coupLer

MPI HDF5CWIPI

ISO_C_BINDING CYTHON

AI4HPC

* PhyDLL: https://phydll.readthedocs.io/en/latest *** AIA4HPC https://ai4hpc.readthedocs.io
** itwinai https://itwinai.readthedocs.io

https://phydll.readthedocs.io/en/latest
https://ai4hpc.readthedocs.io/
https://itwinai.readthedocs.io/
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