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RE-THINKING SCIENTIFIC WORKFLOWS

Gaps and opportunities of large-scale heterogeneous HPC

' = = . /@ﬂ | S
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Module 6
Multi-tier

* Storage System
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Complex hardware Complex tasks
- 4
Y QN QN
e User’s perspective:
e Find the most suitable hardware for a specific task EeeP _
i . . earning
e Implement cost-effective scaling workflow

e Enable intertwined Al- and HPC-workflows
 HPC center’s perspective:
e Match the application diversity and allow for effective resource-sharing

Module 1 Simulation
Cluster workflow [

Module 3
Data Analytics
Module
Module 4
Neuromorphic
Module
Data Analytics
A workflow
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Parallel High-Capacity Data
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JUPITER - THE BOOSTER

1 ExaFLOP/s (FP64, HPL, no. 4 Top500)
 NVIDIA Grace-Hopper GH200

e 4 chips per compute node
e ~6,000 nodes NVIDIA Grace Hopper Superchip

CPU LPDDR5X
<512 GB

e NVIDIA Mellanox NDR

; x
o —— L
e 4 x NDR200 NICs per compute node 2 - . = %é
T o ot GRACE Ca HOPPER - - EETHINORE L O
i~ ol CPU £ GPU 900 GB/s [> o
» BullSequana XH3000 5 £ =—
 E——— >
7

e Direct Liquid Cooled blades ;
e 2 compute node per blade

SVIDEN < NVIDIA

Mitglied der Helmholtz-Gemeinschaft

GPU HBM3
< 96 GB HBM3

120 GB LPDDR5X
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Expensive DNS / LES

tip-gap vortex

turbulent wake

CFD/AI INTEGRATION

e
0.225
0.2

———

B0.1

0

. ~4\O e
pred 9y Diffusion Models
Transformers
Convergence
of
CFD + Al
Autoencoders
Autoencoders
de\'\(\g

Output




MULTI-PHYSICS SIMULATIONS WITH M-AIA

@) JULICH
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......

M-AIA (multiphysics Aerodynamisches Institut Aachen) [l
e Open-source CFD / multi-physics simulation framework developed for +25 years !
« Developed at RWTH (AIA) and Forschungszentrum Jiilich (JSC) r. ol m

e ~ 360Kk lines of code (C/C++, Markdown, Python, etc.) with > 50 active branches
e C++/MPI/OpenMP / PSTL / HIP / parallel I/O

Fully-resolved particle simulation

100 A) JOLICH : JARAHPC TV HAACHEN

Number of commits
@
3

Feb Apr Jun Aug Oct Dec Feb Apr Jun Aug Oct Dec Feb Apr Jun Aug Oct Dec Feb Apr Jun Aug Oct Dec Feb Apr Jun Aug Oct

(1] (1]

== Commits Avg: 3.44 - Max: 116

Jet noise (engine with chevrons) Propeller flow Particle flow in the human respiratory tract



M-AIA

Multi-physics simulations [“]

geometry

.........................................................................................................................................

Parallel grid generator . External tool
. M-AIA < Structured mesh

Hierarchical unstructured >
Cartesian mesh :

: Solvers

Applications

biofluidmechanics aeroacoustics technical moving boundaries particles




base partition level

1 1 1
1 1 1
. ! ..
M-AIA SCALINGS [2-6] . ' '
I 1 1 I OFV
a+l 1 1 O LS
m-AIA FV-DG benchmark 1.2*10° cells / 1.0*10° DOF les2 : : ® FV+LS
64 procs/node, 2 threads 1 1 1
10 loss 1 - '  @FV+LPT
3 T T T T T3 1 1 I .
F ] : rank d; rank d;, | : rank d;;» : @ partition cell
TE Iinear.' LB scaling on large-scale HPC systems MPI/OpenMP
L -9 - Vega ] - I | I | I l { | | 1 | | 1 T ]
' MeluXina ,, ' i ideal
01 ' — &~ Discoverer JopN 1021 —— 1.07 - 107 cells, HAZEL HEN
[ — 4 - Karolina TIPS ] 0 - | —®— TLB, 1.07 - 10? cells, CLAIX g
- [ Hawk o] - | —%— 1.07 - 10° cells, JURECA .
0.01 ' : ) ' S k TLB, 1.07 - 10° cells, JURECA |
B , 1. . cells, ]
32 128 512 2048 4096 3 s o n
S 10 || —6— 1.23-10° cells, JUQUEEN -
Number of nodes = g g
Coupled FV / LPT scaling on Hawk - i
11.9 x 108 part., 1.115 x 10° cells 100 L1 | r |
|ideal speedup é ¥ DV KT % ‘D T ’0763 g g /_09 VJ)QCP q‘PdD <5 ‘{)\‘? ‘P{ ) EE ,
28 | interleaved —m e |- 4 ¥ o 6 ¥ $ % (2 > %
— - no. cores
24 L sequential =e- | © ]
: : R LB PSTL JEDI / JUPITER scaling LB PSTL JUWELS Booster
I I ] 2 T T T —
_5‘ ideal 1071 ideal
g —0— 1.68 - 107 cells a - | —@— 1.34 - 108 cells 1
2 S 10!} 8 S L
3 —6— 1.34 - 108 cells 8 || —6—2.097 - 10° cells
& Q 10 N
& /7]
100 ¥ ' ' 100 )4
2048 16384 32768 65536 7 ° ¥ & c D O S G O
8192

number of MPI processes

number of nodes (4 GPUs per node)

number of nodes (4 GPUs per node)



Al FOR CFD APPLICATIONS
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AERODYNAMIC PREDICTIONS

Active Drag Reduction (ADR)

e ADR spanwise traveling transversal
surface waves

e Reduce energy consumption and emissions:
e Drag reduction
* Net power savings
e Vision: ron-actuted

e Short/middle-term: Understand mechanisms of

ADR, reduce simulation costs, and optimize the
design choices

e Long-term: Application in airplanes in cruise
flight, highspeed trains, etc.

e Simulation-based analysis requires HPC resources

UJ JULICH

Forschungszentrum

Mitglied der Helmholtz-Gemeinschaft



ACTIVE VS. PASSIVE DRAG REDUCTION

Example: Spanwise oscillating wall Example: Riblet surface

Inflow ..

. S

Active DR, e.g., oscillating wall Passive DR, e.g., riblet surface

@ Flexible to flow conditions © Tailored to flow conditions, hence less flexible
@ Higher DR / net power savings © Lower DR / net power savings
© Power input and technological overhead @ No power input

© Low technological readiness level @ Medium technological readiness level



SPANWISE TRAVELLING SURFACE WAVE SIMULATIONS

Research questions
e What is the drag/net power (Cp, Pet) dependence on the actuation parameters?

e What are Cp, P,,.: for non-simulated cases?
In total 88 configurations... 8.3TB of data

At =200 | A = 600
Inflow ke : e
g At =45 aAaAnn AT =66 AN
X § At = 500 ; At = 900

Q: Af =64 A~ A =63 I~~~

2 AT = 1000 | AT =1800
At =60 At =75 ——

| A+ = 3000 | At = 1600

A =T e AL T2 e~

Mitglied der Helmholtz-Gemeinschaft



SIMULATION METHOD

M-AIA on structured meshes [’

Simulating TBLs with a finite-volume method

e Solves the compressible Navier-Stokes equations:
AUSM method for the formulation of the inviscid fluxes

MUSCL scheme for flow quantity reconstruction at the
cell surfaces

5-stage Runge-Kutta for temporal integration

LES modeling via MILES approach (numerical
dissipation models viscous dissipation)

Synthetic turbulence generation at inlet

e Uses a structured, body-fitted mesh = >
e Arbitray Lagrangian Eulerian (ALE) for mesh deformation /

e Simulation parameters: Reg = 1,000, Ma = 0.1




COMBINING MULTIPLE CNNS

Convolutional AutoEncoders (CAEs)

T 5 ) . Yo\ . Yo\ g
3 x 13| % |3 |33 MR- E-R R - R
s |28 |58 |2|8|¢8|c S 1222 x[8 |22 |x
Training NSRRI N AT R RE
e |4 E E 3 SE 1 E R E L
e First train CAE-NN section of the network @ | & S LE| | 2| [ 2] |8
. R N N N @ | 8 g g S
e Once the CAE-NN network provides ‘ - W W I WY
satisfactory results, the rest of the 0.0 . 5
P . SN = PO = R Y 2 2
network for the prediction of the Qolsis = (£ 5 || 2 |2 & |3 SEREEN
. % g ® ® B ® 5 n
trained o R R
e Train for Cp, P,.; separately = |2 S S
Actuation CAE-NN CAE-PN
Parameters
concatenated

e During testing, the decoder part of the CAE-NN initially reconstructs the higher-resolution velocity
fields from the latent space, which is fed to the rest of the corresponding network.

@) JULICH
Mitglied der Helmholtz-Gemeinschaft

Forschungszentrum



COMBINING MULTIPLE CNNS

Convolutional AutoEncoders (CAEs)

Results: direct comparison of LES and the reconstrution from the CAE-NN

0 100 0 100

Input Output 1.0 Input Output 1.0
0 0 0 0 b
50 50 0.5 50 50 0.5
100 100 100 100
v i Y 0.0 ¢ AV
150 150 150 150 0.0
-0.5
200 200 200 200
—0.5
~1.0
0 100 0 100
i i

Cross-sections of the scaled streamwise (u * ) (left) and spanwise (w * ) (right) velocity
components from the LES (Input) and reconstruction by CAE-NN (Output).

UJ JULICH
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COMBINING MULTIPLE CNNS

Results [8-10]

A deeper look into the performance of the CAE

 Measure CAE’s scale-specific
. . Input u, IMF1 Output u, IMF1
accuracy via NA-MEMD analysis 0 0
. . 50 0.05  sq
e Intrinsic Mode Functions (IMFs) 100 106
. o 0.00
are modal representations 150 150
categorized with respect to flow 200 | 005 200
features that share a certain range T B 0.10
of scales " " "
 Large-scale flow features .
contained in IMF5 of the i — y
reconstructions are in satisfactory = ?* sl FEES c
= --- Output v || Z p= /
agreement N
* Agreement is worse for the small- | ) -5 N . 7
scale structures visible from IMF1 v oo W W

0.10 Input u, IMF5

NA-MEMD = Noise-Assisted Multivariate Empirical Mode Decomposition

Output u, IMF5

0
50
100
150
200

0.00
-0.10
-0.20
-0.30
-0.40
-0.50
-0.60

PSD (IMF5)




COMBINING MULTIPLE CNNS

Convolutional AutoEncoders (CAEs)

Results: Performance of the CAE-PN

Interpolation Extrapolation

max min |mean | std max min |mean | std
ACy(tar) 048 0.150.35 (0.11 0.51 0.09 | 0.28 [0.14
AC (pred) 0.55 0.18 | 0.37 | 0.08 0.52 0.14 | 0.29 |0.08
deviation 14.5 20.0 | 5.71 |27.3 1.96 55.6 | 3.57 |42.9
P, (tar) 036 0.08 | 0.14 [ 0.09 0.16 0.06 | 0.11 | 0.04
Pret (pred) 0.32 0.01 | 0.15 [0.07 0.23 0.09 | 0.14 | 0.03
deviation 11.1 87.5|7.14 |22.2 43.8 50.0 | 27.3 |25.0

Satisfactory interpolation performance. Extrapolation performance not good for net power saving

Mitglied der Helmholtz-Gemeinschaft
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TRANSFORMERS FOR TEMPORAL PREDICTION

Architecture [11.12]

Idea: Perform temporal predictions to replace expensive LES time steps

[ufm«H’ trrs utn]
A
s ) s 1 )
( Encoder Layer 6 J [ Linear Mapping j
f f
( \ [ EncoderE Layer 2 ] [ Dot et ] ( )
[ Add & Normalize ) / f ( Add & Normalize )
[ Feed Forward j \[ Encoder Layer 1 J ( Decoder Layer 2 J E Feed Forward %
( Add &Normalize )| /[ 4 A Add & Normalize
) Positional Encoding | Decoder Layer 1 Encoder Decoder
\( Self Attention j} g [ £ ] —q;) [ ] [ Attention J
E k[ Input*Layer l § L[ InputTLayer l E Add & Normalize %
Self Attention
dimension of the velocity tensor [ug,, Upy, .o, gy, g, ..., ut, ] \ 7 empirically chosen

d dy, 2 2 l
O 5 Z 3111& aut 3utn 8uj§n (9Utn 8u;fn _ _
Lt"ml:d_Z<ut —up)’ T [( a;) +< dy Oy "\ " o lo=10,5=0.06



TRANSFORMERS FOR TEMPORAL PREDICTION

Results: Prediction performance (velocity components) [11.12]

0.090

0.085 1

0.080 1
>

(@) 1 X Attg.

0.075

0.070+

—— Target
---- Prediction

target

prediction

(b) 2 X AtTR-

u

0.090 1

0.085 |

0.080 1

0.075 1

0.070 1

—— Target
---- Prediction

0.0901 _ Target
0.085 1
0.080 1
0.075 1

0.070 1

-=--- Prediction

0.065
0

20
40
60

80

20
40
60

80

(d) 10 x AtTR-

u

0.090 1

0.085 1

0.080

0.075 1

0.070

0.065

—— Target
-=--- Prediction




TRANSFORMERS FOR TEMPORAL PREDICTION

Results: Prediction (MSE, DMD) and computational performance (1112

Average MSE (m™2/s"2)

I

wall-time (node sec.) 0.685 53.3 (speed-up)

memory (GB)

w
o
)

N
U
A

N
o
)

=
U
|

=
o
5

o
e

o
=)

x107°

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Aty

Model accuracy with increasing no. of time steps

36.48

466.69 0.422

Mitglied der Helmholtz-Gemeinschaft

1105.9 (memory savings)

Target Mode 1 — u

1.000

0.995

0.990

0.985

Average R? Score

o
©
©
S

0.975

0.00134
0.00119
0.00104
0.00089
0.00074
0.00060
0.00045
0.00030
0.00015
0.00001

0.00034
0.00025
0.00017
0.00009
0.00000
-0.00008
-0.00016
-0.00024
-0.00033
-0.00041

0.00065
0.00055
0.00046
0.00037
0.00028
0.00019
0.00010
0.00001
-0.00008
-0.00017

Prediction Mode 1 — u

Prediction Mode 1 — v

: \‘&-;,',,)‘.4 YWY -
s
0 25 50 75

N\

DMD analysis: first mode comparison for At, = 2.
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-0.00033
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0.00010
0.00001
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-0.00017



CONVOLUTIONAL DEFILTERING MODELS (CDMS)

Super-Resolution modeling

The general idea behind CDMs (3] variance schedule

controls step size

o Makes use of the idea of diffusion models {B: € (0,1}
e Model a Markov chain as forward diffusion process with continuous Gaussian noising

@ O ’

Q(xt‘xt—l) = N(Cl?tQ V1= Biwyq, Btl)
sole dependence

T
on previous chain | q<$1:T|330) — H Q(xt ’xt—l)
I element S | | =1

*

e Change pixel values slightly in the area of the Gaussian distribution function

probability density

pixel 1
M
pixel 2

higher
probability

A

noised pixel 1 | 110

o)

lower noised pixel 2 | 80
probability




CONVOLUTIONAL DEFILTERING MODELS (CDMS)

Layer1 Layer7
Layer6 ‘
Layer
ayer ‘

p@(l’o:T) — p@(fL’T) HPH(xt—l |513t)

Super-Resolution modeling

The general idea behind CDMs (3]

 Now train a U-Net to model the reverse Markov process.

pe(l’t—1|33t)

Q($t|ﬂ3t—1)
— - - - — < @4— -

probability density

A

pixel 2 e () are the parameters of the neural network

4 po(z0.7) e \WWe would like to minimize the negative log-likelihood:
By —log po(xo)
e @) JULICH
Forschungszentrum

pixel 1




CONVOLUTIONAL DEFILTERING MODELS (CDMS)

Super-Resolution modeling

The general idea behind CDMs (3]

Towards a loss function of the U-Net;:

l is untractable (too many paths)
—logpg(wg) = —log / po(wo.T)dx1.T
po(xi—1|Tt) = N(,u'¢970-(9)
| , po(xo.T) | (Gaussian with fixed &)
ineegsuearl]itil — < —Ey@y |z |l0g q(xl;T|x0)] Evidence Lower Bound (ELBO)
— Eyrien | Dics gl lzeaHptrr T S Dict ((z e 2o) oz 112,) Mm]
T t>1
—_— ) independent of 6 g small

true posterior
(but we are missing the true I()

l) JULICH

Forschungszentrum
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CONVOLUTIONAL DEFILTERING MODELS (CDMS)

Super-Resolution modeling

backward process forward process

The general idea behind CDMs ['3] N (po,0¢) N (fit, Br)
Towards a loss function of the U-Net:
= Eo@irleo) _Zil\ﬁt—ue(m ol
A\ T1:TTo = 20752 7y | Mt
_ ; )
= K (p:iz — €g(xs,t
N q(z1.T|T0) ;20}20&(1_0’1&)“6 69( t )H o
- T noise difference
iy = 1 (:v B e)
reparametrization ! Vo ' V19— ay
_ 1 B .
o) = 7o (0= eten) @) JULICH
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CONVOLUTIONAL DEFILTERING MODELS (CDMS)

Super-Resolution modeling: application to turbulent flows [°]

Instead of to pictures, apply to physical fields (gradually increase filter width)

filtered input filtered input filtered input filtered input

200

150

100

50

0 50 100 150 0 50 100 150

Streamwise velocity component of a turbulent flow field

UJ JULICH
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CONVOLUTIONAL DEFILTERING MODELS (CDMS)

Super-Resolution modeling: application to turbulent flows !

Use 3D U-Nets to perform the defiltering

e Input Z is filtered (Gaussian filter) toZ
e Add small noise € to avoid overfitting to

7| Forward diffusion ZN_l.T 1 e filter Widﬂj
process o e Provide Z to the 3D U-Net
e Loss-function as Z = Z
ﬂ ﬂ * Pixel-to-pixel
N » Gradient-to-gradient

Reverse (defiltering)

/¢ diffusion process 3D U-Net e Physics-based, etc.

e The output is the “defiltered” Z
e Repeat by increasing filter width V

@) JULICH
Mitglied der Helmholtz-Gemeinschaft J Forschungszentrum




CONVOLUTIONAL DEFILTERING MODELS (CDMS)

Super-Resolution modeling: application to turbulent flows [°]

Results of the reconstruction

original Z = y; filtered Z output Z original Z = Wu; filtered Z output Z
P > - -

20
€
,§, 0
x
-20
-20 0 20
z [mm] z [mm]
osd A\ e original Z 2000 0 iR (k== original Z
-—- filtered Z ~ 100 - —-—- filtered Z
g —0.61 \ — output Z %’ —— outputZ
5- E 0_ el
5 -0.7 1 3
S
—0.8 - —100 -
-20 -10 0 10 20 20 10 0 10 20
z [mm] z [mm]
Tested filter width N=5: 0.5% error on average Gradient: 3.5% error on average

Mitglied der Helmholtz-Gemeinschaft



Power Spectrum of Vu;

CONVOLUTIONAL DEFILTERING MODELS (CDMS)

Super-Resolution modeling: application to turbulent flows !

Results and future integration into simulations

10° 4

1071 3

1072 3

103 4

1074 3 —
— original Z

—— filtered input Z

-5 ~
10 —— CDM outputZ

1072 1071
K [1/m]

PSD of the instantaneous
velocity gradients

Mitglied der Helmholtz-Gemeinschaft

CPU GPU
g L [o[s
¢ | @
Q
CDM (2.)
(3.)
T <— gb ¢
¢ | @
aE—
wall
WMLES

Using CDMs in WMLES

Zero-degree interpolation of
the LES fields close to wall
Allocation of a DNS grid

Lower memory foot print (only
at layers close to the wall and
for selected quantities)

Provide interpolated fields
to CDM

Output from CDM back to
LES, e.g., the wall-shear
stresses

l) JULICH

Forschungszentrum



RUNNING Al EFFICIENTLY AT SCALE ON HPC SYSTEMS

@) JULICH
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EFFICIENT TRAINING IN PARALLEL

Bringing training to GPUs [°!

Most common case: Data parallelism
e Data Distributed Parallel with, e.g., PyTorch-DDP, Horovod,

DeepSpeed

e A mini batch is split over the number of workers

(GPUs) = micro batches

e Each worker
e has a copy of the architecture
e works only on a micro batch

e A supervisor node
e collects all gradients
e updates the weights
e sends model updates to the workers

Mitglied der Helmholtz-Gemeinschaft

Data parallelism

—- e — — = —

TBL dataset

Minibatch
A

N AN
Y Y

J

".I
¢

N J
Y

Microbatch 1
v

Microbatch 2
v

Microbatch N
v

Worker 1

Load batch
A/

Forward pass

Backward pass

v
Gradient g4
computation

Worker 2

Load batch

A 4
Forward pass

Backward pass

v
Gradient g,
computation

Worker N

Load batch

\ 4
Forward pass

\ 4
Backward pass

v
Gradient gy
computation

i)

Host

Average gradients g

v
Update weights
Wn+1 — wn _ ag—

Center of Excellence

Model parallelism



EFFICIENT TRAINING IN PARALLEL

Bringing training to GPUs

To make the most efficient use of GPUs, the full memory should be used
e Reduces limited computation per GPU

I I Adapti he | ' ight hel
e Reduces communication overhead apting the learning rate might help

0.8 -

Large batch size problem
e The batch size is a function of the number of GPUs
e updates of the model parameter happen too sparsely *

0.4 || —e— LR step-wise
Despite of great scaling, the accuracy of the || 5 L cosine anneating 7
mOdel IS nOt ImprOVIng 256 512 1k 2k 4k &8k 16k 32k 65k

BS

B = f(no. GPUs) @) JULICH
Mitglied der Helmholtz-Gemeinschaft Forschungszentrum



EFFICIENT TRAINING IN PARALLEL

Improving the training of Neural Networks

Model accuracy improvement / faster convergence
e Use advanced optimizers such as Adam / use adpative learning rate methods

e Make sure not to exceed a limiting batch size (by using, e.g., too many GPUs)
e Use the Adaptive Summation Algorithm (AdaSum)

parallel / almost parallel neither parallel / orthogonal orthogonal
g2 i
gl
div.. gr = g1 + g div.: OK: gr = g1 + Go

OK: g, = % (g1 + g2) OK: gr = | g . g2 'J JUL'CH

Forschungszentrum



EFFICIENT TRAINING IN PARALLEL

Improving the training of Neural Networks

Training speed-up with Automatic Mixed Precision (AMP)

FP16 NN FW
L = FP32 L(X,W)
L = alpha * L

if! (res == NAN ||
{
grad = 1/z grad
updateOpt
}

FP16 res = FP_16 NN BW

res == INF)

//
//
//
//
//
//

//
//

Compute network forward pass in FP1l6
Compute loss 1in FP32

Scale by a large factor to ensure
representability in FP16

Compute backward pass in FP16

Check for NAN / INF

Unscale gradients
Update optimizer

Mitglied der Helmholtz-Gemeinschaft
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EFFICIENT TRAINING IN PARALLEL

Improving the training of Neural Networks

Training speed-up with the cuDNN autotuner
e Many compute kernels are tuned for NVIDIA GPUs

e Using the cuDNN library runs benchmarks on the computation and automatically
selects the most efficient kernels

Gradient accumulation
e Reduces the 21 1Reduce communications

e First sums all gradients in a bucket and fuses all gradients in a single parallel
operation

e Overlaps computation and communication (asynchronous communication)

@) JULICH
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EFFICIENT TRAINING IN PARALLEL

Improving the training of Neural Networks

Training speed-up with CUDA-aware MPI

e Makes use of the direct connection between GPU and
network link

XS¥aadi ndd
g9 71§
XSy¥aadi ndd

7N
v
~
(9}
™

Training speed-up with improved I/O

e Play around with multi-process data loaders such as
NVIDIA DALI

diyaiadng 1addoH adeun v|qIAN
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EFFICIENT TRAINING IN PARALLEL

Improving the training of Neural Networks !

Improvement of up to 90% using

e AMP
e cuDNN

e Gradient accumulation
e CUDA-aware MPI

Scaling of a DL-library on the
(almost) whole JUWELS Booster
with up to 96% efficiency
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EFFICIENT TRAINING IN PARALLEL

Improving the training of Neural Networks: Hyperparameter Optimization *

Resource Adaptive Successive Doubling Algorithm (RASDA) ['4]

RUg 0 Rurg 1 Bang 2 CFD: Runtime of the Best Trial per Epoch
[ar jar
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* More details about HPO: Visit Eric Wulff’'s talk this afternoon
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SUMMARY, CONCLUSIONS, ONGOING AND NEXT STEPS
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SUMMARY, CONCLUSIONS, ONGOING AND NEXT STEPS

e There exist various methods for physics-aware Al model training

* Note: the methods shown are just an excerpt, there is a whole zoo of models

e The choice of model and its parameters is highly dependent on the considered case

e Note: some methods work better than others (e.g., PINNs vs. DNNs, PC-AEs vs. AESs)
e Hyperparameter tuning is certainly required for model improvement Al4H PC

e Training costs need to be considered

e Next and ongoing steps: .
PhyDLL
e Full coupling of simulations and training / inference * Physics Deep

Learning coupLer

e Hyperparameter optimization for model tuning itWIT\aI C Kernel
. : e aw xx 1: :
e Integration with the itwinai ** and AI4HPC *** libraries — — —
1S0_C_BINDING CYTHON
" PhyDLL: https://phydll.readthedocs.io/en/latest ™ AIA4HPC https://ai4hpc.readthedocs.io

Mitglied der Helmholtz-Gemeinschaft ™ jtwinai https://itwinai.readthedocs.io



https://phydll.readthedocs.io/en/latest
https://ai4hpc.readthedocs.io/
https://itwinai.readthedocs.io/
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